Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 11 из 211      1<< 8 9 10 11 12 13 14>> 211

Многофункциональные таймеры в микроконтроллерах схем управления копиров и принтеров.

Статья добавлена: 02.09.2022 Категория: Статьи

Многофункциональные таймеры в микроконтроллерах схем управления копиров и принтеров. Микроконтроллеры являются основой схем управления многих современных промышленных устройств и приборов. Самой главной особенностью микроконтроллеров, с точки зрения конструктора-проектировщика, является то, что с их помощью легче и зачастую гораздо дешевле реализовать различные схемы управления различных устройств и аппаратов, в том числе и копировальных. Микроконтроллер может управлять различными устройствами, узлами, механизмами и принимать от них данные при минимуме дополнительных узлов, так как большое число периферийных схем уже имеется непосредственно на кристалле микроконтроллера. Это позволяет уменьшить размеры конструкции и снизить потребление энергии от источника питания. Типичные схемы, обычно присутствующие в микроконтроллерах перечислены ниже. Центральное процессорное устройство (ЦПУ) — основа микроконтроллера. Оно принимает из памяти программ коды команд, декодирует их и выполняет. ЦПУ состоит из регистров, арифметико-логического устройства (АЛУ) и цепей управления. Память программ. Здесь хранятся коды команд, последовательность которых формирует программу для микроконтроллера. Оперативная память данных. Здесь хранятся переменные про грамм. У большинства микроконтроллеров здесь расположен также стек. Тактовый генератор. Этот генератор определяет скорость работы микроконтроллера. Цепь сброса. Эта цепь служит для правильного запуска микроконтроллера. Последовательный порт — элемент микроконтроллера, который позволяет обмениваться данными с внешними устройствами при малом количестве проводов. Цифровые линии ввода/вывода. По сравнению с последовательным портом с помощью этих линий возможно управлять одновременно несколькими линиями (или проверять несколько линий). Таймер. Используется для отсчета временных интервалов. Сторожевой таймер. Это специальный таймер, предназначенный для предотвращения сбоев программы. Он работает следующим образом: после запуска он начинает отсчет заданного временного интервала. Если программа не перезапустит его до истечения этого интервала времени, сторожевой таймер перезапустит микроконтроллер. Таким образом, программа должна давать сторожевому таймеру сигнал — все в порядке. Если она этого не сделала, значит, по какой-либо причине произошел сбой. Микроконтроллеры с расширенными возможностями управления содержат в себе и многофункциональные таймеры. Например, некоторые микроконтроллеры имеют два многофункциональных таймера. Их функции служат дополнением к функциям таймера RTCC и сторожевого таймера, имеющихся обычно во всех типах микроконтроллеров. Эти таймеры позволяют высвободить ресурсы центрального процессора для нужд приложения. Особенно это касается приложений реального времени, таких, как генерация сигнала с ШИМ, управление двигателями, управление тиристорными преобразователями, генерация синусоидальных сигналов и, наконец, сбор данных. Каждый многофункциональный таймер может работать в четырех различных режимах. ... ...

Очистка и полировка фотобарабана.

Статья добавлена: 02.09.2022 Категория: Статьи

Очистка и полировка фотобарабана. Всем кто занимается ремонтом копировальной техники, но и просто использующему ее, важно знать, что органический фоторецептор категорически запрещается очищать какими бы то ни было веществами, не предназначенными для этого специально. Спирт, и тем более ацетон, попавшие на покрытие фотобарабана даже в малых количествах, способны необратимо повредить его, оставив ничем не удаляемые пятна, которые на копиях будут проявляться в виде совершенно белых участков или областей пониженной контрастности изображения. Иногда с подобными повреждениями можно справиться путем полировки фотобарабана, однако в большом количестве случаев барабан придется заменить на новый. Пользователям вообще запрещается прикасаться к поверхности фотобарабана или пытаться очищать ее. Специалистам рекомендуется не очень существенные загрязнения удалять с помощью мягкой сухой ткани, совершенно чистой или посыпанной новым, неотработанным тонером. При этом тряпка должна двигаться в направлении, перпендикулярном направлению вращения барабана, лишь слегка нажимая на его поверхность. Для устранения более серьезных загрязнений, а также небольших царапин на фоторецепторном слое можно пользоваться специальными пастами для полировки органических барабанов. Желательно применять только те пасты, на упаковке которых прямо указано, что они подходят для барабанов конкретных моделей копировальных аппаратов. На втором месте стоят пасты, выпускаемые для техники определенных фирм-изготовителей: если на тюбике с пастой написано, что она может использоваться с техникой Sharp, то, вероятнее всего, паста подойдет практически для всех аппаратов этой фирмы. К счастью, фоторецепторы очень многих моделей абсолютно идентичны по своим химико-физическим свойствам и, как правило, с совместимостью здесь не возникает особых проблем. К примеру, для многих копировальных аппаратов подходит полировочная суспензия, выпускаемая под торговым знаком «Pride, Quality, Consistence» (логотип -шесть разноцветных треугольников) и предназначенная для лазерных принтеров EPL/HP Hlsi. Между тем следует помнить, что некоторые экзотические фотобарабаны или требуют специального состава полировочного крема, или вовсе не переносят никаких средств полировки и очистки. В этом случае любая попытка применить другие составы может привести к окончательной потере их рабочих свойств. Обычно это не очень страшно, поскольку к полировке фотобарабана прибегают как к последнему средству, призванному хоть немного продлить срок службы детали, уже отработавшей свой ресурс. Полировку следует производить следующим образом: ... ...

Возможности и средства расширения встроенной памяти планшетов (ликбез).

Статья добавлена: 01.09.2022 Категория: Статьи

Возможности и средства расширения встроенной памяти планшетов (ликбез). Решение проблемы расширения встроенной памяти планшетов осуществляют с помощью карт памяти. В современных планшетах широко используются карты памяти следующих форматов: SD, SDHC, SDXC, microSD, microSDHC. SD(Secure Digital) — один из самых распространенных форматов хранения данных. SD-карты отличаются компактными размерами (32х24х2.1мм) и возможностью защиты хранящейся на них информации от копирования. К достоинствам флэш-карт данного типа также можно отнести высокую скорость записи/чтения, повышенную защиту информации от случайного стирания или разрушения, механическую прочность и низкое энергопотребление. SDHC(Secure Digital High Capacity) является расширением формата Secure Digital и позволяет выпускать карты памяти емкостью более 4 Гб, в то время как объем карт стандарта SD ограничен 4 Гб. Карты памяти SDHC внешне очень похожи на SD, однако могут использоваться только с SDHC-совместимыми устройствами. SDXC(Secure Digital eXtended Capacity) – это дальнейшее развитие формата Secure Digital. Карты SDXC обеспечивают более высокие объем памяти (до 2 Тб) и скорость обмена данными (до 300 Мб/с). Для сравнения, карты формата SDHC, отформатированные в FAT32 имеют ограничение в 32 Гб. microSD(Micro Secure Digital Card) — это формат, позволяющий выпускать суперкомпактные съемные устройства флэш-памяти.

ARM процессоры. RISC архитектура.

Статья добавлена: 01.09.2022 Категория: Статьи

ARM процессоры. RISC архитектура. ARM архитектура объединяет в себе семейство как 32, так и 64-разрядных микропроцессорных ядер, разработанных и лицензируемых компанией ARM Limited. Компания ARM Limited занимается сугубо разработкой ядер и инструментария для них (средства отладки, компиляторы и т.д), но никак не производством самих процессоров. Компания ARM Limited продает лицензии на производство ARM процессоров сторонним фирмам. Многие известные компании уже получили лицензию на производство ARM процессоров, например, AMD, Atmel, Altera, Cirrus Logic, Intel, Marvell, NXP, Samsung, LG, MediaTek, Qualcomm, Sony Ericsson, Texas Instruments, nVidia, Freescale и многие другие. ARM процессор - мобильный процессор для смартфонов и планшетов. Производительность CPU и GPU в различных SoC (System-оn-Chip) может значительно отличаться. ARM - это название архитектуры и одновременно название компании, ведущей ее разработку. Аббревиатура ARM расшифровывается как (Advanced RISC Machine или Acorn RISC Machine), что можно перевести как: усовершенствованная RISC-машина. Некоторые компании, получившие лицензию на выпуск ARM процессоров, создают собственные варианты ядер на базе ARM архитектуры. Как пример можно назвать: DEC StrongARM, Freescale i.MX, Intel XScale, NVIDIA Tegra, ST-Ericsson Nomadik, Qualcomm Snapdragon, Texas Instruments OMAP, Samsung Hummingbird, LG H13, Apple A4/A5/A6 и HiSilicon K3. Чем отличается архитектура ARM от x86 процессоров? На базе ARM процессоров сегодня работает фактически любая электроника: КПК, мобильные телефоны и смартфоны, цифровые плееры, портативные игровые консоли, калькуляторы, внешние жесткие диски и маршрутизаторы. Все они содержат в себе ARM-ядро, поэтому можно повторить, что ARM — это мобильные процессоры для смартфонов и планшетов. ARM процессор представляет из себя SoC, или "систему на чипе". SoC система, или "система на чипе", может содержать в одном кристалле, помимо самого CPU, и остальные части полноценного компьютера. Это и контроллер памяти, и контроллер портов ввода-вывода, и графическое ядро, и система геопозиционирования (GPS). В нем может находится и 3G модуль, а также многое другое. Если рассматривать отдельное семейство ARM процессоров, например, Cortex-A9 (или любое другое), нельзя сказать, что все процессоры одного семейства имеют одинаковую производительность или все снабжены GPS модулем. Все эти параметры сильно зависят от производителя чипа и того, что и как он решил реализовать в своем продукте. Сама по себе RISC (Reduced Instruction Set Computer) архитектура подразумевает под собой уменьшенный набор команд. Что соответственно ведет к очень умеренному энергопотреблению. Ведь внутри любого ARM чипа находится гораздо меньше транзисторов, чем у его аналога из х86 линейки. Кроме того, в SoC-системе все периферийные устройства находится внутри одной микросхемы, что позволяет ARM процессору быть еще более экономным в плане энергопотребления.

Основные технические характеристики USB 4.

Статья добавлена: 31.08.2022 Категория: Статьи

Основные технические характеристики USB 4. Некоммерческая организация USB Implementers Forum объявила о запуске USB 4 — новой версии популярного разъема. Максимальная пропускная скорость обновленного разъема составит до 40 Гбит/c. Это вдвое больше, чем у USB 3.2 Gen 2×2 и столько же, сколько у Thunderbolt 3 (Type-C), который вышел еще в 2015 году. В USB 4 будет новый базовый протокол, основанный на Thunderbolt 3. Максимальная скорость будет до 40 Гбит/с, сохранится обратная совместимость с USB 3.2, USB 2.0 и Thunderbolt 3. Пропускная мощность USB 4 составляет 100 Вт, как у Thunderbolt 3. Этой мощности и скорости 40 Гбит/c хватит для подключения двух мониторов с разрешением 4К или одного 5К-дисплея. Во многом USB 4 повторяет характеристики трехлетнего Thunderbolt 3, но обойдётся дешевле производителям железа. А значит, его потенциально задействуют в гораздо большем количестве девайсов. Как и Thunderbolt 3, он будет использоваться не только в компьютерах, но и в мониторах и внешних видеокартах (eGPU). Первые гаджеты с поддержкой USB 4 планировали выпустить ориентировочно в начале 2021 года. В четвертом поколении интерфейса USB добавлена поддержка новых функций, новый открытый стандарт позволит заменить Thunderbolt 3. При этом компания Intel, владеющая Thunderbolt, не планирует от него отказываться — вместо этого она добивается сосуществования этих интерфейсов со схожими функциями. Взамен Intel предложит производителям уровень поддержки, недоступный для открытых решений. USB 4 станет альтернативой для бюджетных ноутбуков и компьютеров. USB Implementers Forum планирует стандартизировать все перечисленные возможности, однако производитель сам будет решать, какие из них реализовать в своем устройстве. Несмотря на открытость USB 4, он будет совместим только со стандартом USB Type-C. Полные спецификации USB 4 обещали опубликовать во второй половине 2020 года, однако устройства с его поддержкой планировали выпустить не раньше 2021 года. Тем самым USB Implementers Forum хочет поставить точку в многолетней истории USB-A. Спецификация USB 4 является серьезным обновлением для архитектуры USB следующего поколения она удваивает пропускную способность USB и позволяет использовать несколько протоколов передачи видео и данных одновременно.

Требования к напряжению питающей сети компьютеров.

Статья добавлена: 31.08.2022 Категория: Статьи

Требования к напряжению питающей сети компьютеров. Для нормальной работы компьютера, напряжение питающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превышать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады напряжения, возникающие при включении и выключении этого оборудования, немедленно сказываются на его работе. При работе мощных агрегатов в сети могут возникать переходные процессы (всплески напряжения) амплитудой до 1000В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется отдельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зависит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следующие правила: подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими); перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким); выходное напряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения; подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется без заземления; не пользуйтесь без крайней необходимости удлинителями (выбирайте те из них, которые рассчитаны на подключение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т. е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше; для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку. Холодильники, кондиционеры, кофеварки, копировальные аппараты, лазерные принтеры, обогреватели, пылесосы и мощные электроинструменты тоже отрицательно влияют на качество питающего компьютер напряжения. Любое из этих устройств, включенное в одну розетку с компьютером, может стать причиной его сбоя. Кроме того копировальные аппараты и лазерные принтеры потребляют слишком большую мощность, и их только из-за этого уже не стоит включать в одну розетку с компьютером. Нельзя, чтобы вся электросеть офиса представляла собой последовательную цепочку проводов и розеток, в этом случае, качество напряжения для компьютеров, подключенных к последним розеткам в этой цепи оставляет желать лучшего.

Технологии для тонких, эффективных и ярких экранов или дисплеев.

Статья добавлена: 30.08.2022 Категория: Статьи

Технологии для тонких, эффективных и ярких экранов или дисплеев. OLED является новой технологией, с помощью которой можно производить тонкие, гибкие и яркие дисплеи. OLED-дисплеи изготовляются из органических светоизлучающих материалов и поэтому OLED-дисплеи не требуют подсветки и поляризационных фильтрующих систем, которые используются в LCD-дисплеях. OLED (Organic Light-Emitting Diode – органический светоизлучающий диод) – это диод, изготовленный из органических соединений, который излучает свет при пропускании через него тока. OLED-дисплеи в устройствах можно сделать гибкими, тонкими и прозрачными. Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивная матрица (PM) или активная матрица (AM). В настоящий момент применяются три основных схемы реализации цветных OLED (рис. 1,2,3): схема с раздельными цветными эмиттерами; схема WOLED + CF (белые эмиттеры + цветные фильтры); схема с конверсией коротковолнового излучения. Самый эффективный и логичный вариант реализации цветных OLED — это формирование структур с раздельными эмиттерами (рис.1). Этот вариант и самый эффективный с позиции использования энергии, но он реализуется с определенными технологическими трудностями.

Модуль лазер-сканер формирующий сразу два луча при сканировании (пример).

Статья добавлена: 02.09.2022 Категория: Статьи

Модуль лазер-сканер формирующий сразу два луча при сканировании (пример). Модуль лазер-сканер принтера обеспечивает формирование лазерного луча и его перемещение по поверхности фотобарабана (фоторецептора). Лазер представляет собой полупроводниковый лазер, работающий в красном диапазоне. В этой модели принтера используется сдвоенный лазер, формирующий сразу два луча. За счет этого скорость создания изображения сразу увеличивается вдвое. Луч лазера отражается от вращающегося полигонального зеркала, которое обеспечивает сканирование луча по поверхности фотобарабана т. е. от его граней отражается лазерный луч и попадает на поверхность фотобарабана (см. рис. 1). Для синхронизации работы лазера и определения моментов, когда луч находится в начале строки, применяется фотодетектор - датчик луча (Beam). Импульсный сигнал, формируемый этим фотодетектором, подается на микроконтроллер и определяет момент начала передачи данных. Общий принцип работы блока лазер-сканер демонстрируется на рис. 2.

Операционные усилители. Устройство и принцип действия.

Статья добавлена: 26.08.2022 Категория: Статьи

Операционные усилители. Устройство и принцип действия. Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами: их усиление или ослабление, сложение или вычитание, интегрирование или дифференцирование, логарифмирование или потенцирование, преобразование их формы и др. Все эти операции ОУ выполняет с помощью цепей положительной и отрицательной обратной связи, в состав которых могут входить сопротивления, емкости и индуктивности, диоды, стабилитроны, транзисторы и некоторые другие электронные элементы. Поскольку все операции, выполняемые при помощи ОУ, могут иметь нормированную погрешность, то к его характеристикам предъявляются определенные требования. Требования эти в основном сводятся к тому, чтобы ОУ как можно ближе соответствовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное сопротивление ОУ должно быть равно бесконечности, а следовательно, входной ток должен быть равен нулю. Выходное сопротивление должно быть равно нулю, а следовательно, нагрузка не должна влиять на выходное напряжение. Частотный диапазон усиливаемых сигналов должен простираться от постоянного напряжения до очень высокой частоты. Поскольку коэффициент усиления ОУ очень велик, то при конечном значении выходного напряжения напряжение на его входе должно быть близким к нулю. Входная цепь ОУ обычно выполняется по дифференциальной схеме, а это значит, что входные сигналы можно подавать на любой из двух входов, один из которых изменяет полярность выходного напряжения и поэтому называется инвертирующим, а другой не изменяет полярности выходного напряжения и называется — неинвертирующим.

Меры предосторожности от электростатических явлений при профилактическом обслуживания ПК.

Статья добавлена: 29.08.2022 Категория: Статьи

Меры предосторожности от электростатических явлений при профилактическом обслуживания ПК. Регулярная чистка – это одна из самых важных операций профилактического обслуживания, но чистка неожиданно стала причиной неисправности компьютера (если, например, вовремя не отвести накопившийся статический заряд, то это может привести к неработоспособности различные компоненты компьютера). Характер проявления неисправности (по словам хозяина): компьютер после нажатия на кнопку включения электропитания «зависает», нет звуковых и текстовых сообщений на экране, не реагирует на нажатия на клавиши клавиатуры и «мышку», т. е. не подает признаков «жизни». Проверка компьютера показала, что информация соответствует истине. Тщательная регулярная чистка – это одна из самых важных операций профилактического обслуживания. Причиной многих неприятностей является пыль, которая оседает внутри компьютера. Пыль является теплоизолятором, который ухудшает охлаждение системы, в результате этого сокращается срок службы компонентов и увеличивается перепад температур при прогреве компьютера В пыли обязательно содержатся токопроводящие частицы, что может привести к возникновению утечек и даже коротких замыканий между электрическими цепями (недаром в аппаратуре военного назначения для защиты схем от влияния пыли, влаги и т.п. платы с электронными компонентами обычно покрывают специальным лаком). Некоторые вещества, содержащиеся в пыли, могут ускорить процесс окисления контактов, что приведет в конечном счете к нарушениям электрических соединений. В любом случае аккуратно и квалифицированно проведенная чистка компьютера пойдет ему только на пользу. Для того чтобы качественно и профессионально почистить компьютер и все его компоненты, необходимо использовать специальные инструменты и соответствующие по качеству расходные материалы. Прежде всего необходим специальный раствор для чистки контактов, баллончик со сжатым воздухом, маленькая щетка, поролоновые чистящие тампоны и заземленный наручный браслет для снятия статических зарядов электричества.

Некоторые причины возникновения отказов электронных схем

Статья добавлена: 25.08.2022 Категория: Статьи

Некоторые причины возникновения отказов электронных схем. Современные технологии изготовления различного вида печатных плат и безсвинцовые технологии пайки - экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам. Достаточно часто, в разговорах со специалистами по ремонту персональных компьютеров, можно услышать: «пропаял контакты микросхем, разъемов неисправной платы и она заработала, неисправность исчезла». Обычно такое «волшебство» пропайки объясняют плохим качеством паяного соединения, но действительно ли это так? Есть и более реальное объяснение. «Усы» олова — это микроскопические проростки металла из мест пайки на печатной плате, являются причиной возникновения отказов электронных схем из-за замыканий между контактами и проводниками. Общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок, выполненных по современным технологиям. Например, при внимательном обзоре (с помощью электронного микроскопа с выводом изображения на экран монитора) было обнаружено замыкание контактов микросхемы на системной плате (см. рис. 1). Причина замыкания - «усы» олова. Один «усик» может пропускать около 30 мА — что более чем достаточно для повреждения цифровых схем. Что способствует появлению «усов»? Оказывается, что они могут расти при температуре и влажности окружающей среды или в вакууме, а также при постоянных или изменяющихся температурах (хотя варьирование температуры может способствовать их росту). Кончики «усов» соразмерны атому. За достаточное время они протолкнутся через любое покрытие. Поэтому при работе с безсвинцовыми припоями возникает ряд проблем, которые связаны с их физическими свойствами. Поэтому паяльные станции должны быть специально адаптированы для работы с новыми припоями. Основные проблемы, которые могут возникнуть при пайке безсвинцовыми припоями: ,,, ,,,

Оптоволоконные линии связи (ликбез).

Статья добавлена: 25.08.2022 Категория: Статьи

Оптоволоконные линии связи (ликбез). Волоконная оптика используется как коммуникационная среда, соединяющая электронные устройства. Волоконно-оптическая связь может быть организована между компьютером и его периферийными устройствами, между двумя телефонными станциями или между станком и его контроллером на автоматизированном заводе. Применение волоконной оптики связано с преобразованием электрического сигнала в световой и обратно, стоимость волоконной оптики достаточно высока, но преимущества волоконной оптики определяемые уникальными характеристиками оптоволокна делают его наиболее подходящей передающей средой во множестве различных областей техники. Эти уникальные характеристики оптоволокна органично согласовываются, позволяя передавать данные с высокой скоростью на большие дистанции и с небольшим числом ошибок. Оптоволоконные линии обеспечивают: - широкую полосу пропускания линии; - нечувствительность линий к электромагнитным помехам; - низкие потери; - малый вес и малый размер; - безопасность и секретность. Важность каждого из этих достоинств зависит от конкретного применения оптоволоконных линий. В одном случае широкая полоса пропускания и низкие потери являются самыми ценными характеристиками. В других случаях важна безопасность и секретность передачи данных, которые легко обеспечиваются при использовании волоконной оптики. Оптическое волокно является сверхбезопасной средой для передачи информации. Оно не излучает волны, которые могут быть получены близко расположенной антенной. Подсоединиться к оптоволокну крайне тяжело, поэтому все рассматривают оптическое волокно как информационную среду, обеспечивающую надежную защиту передаваемой информации. Оптическое волокно при передаче информации телефонных разговоров или компьютерных данных играет ту же роль, что и медный провод, но по волокну переносится свет, а не электрический сигнал. Средой переносящей информацию является оптическое волокно (тонкая стеклянная или пластиковая нить). В связи с этим появляется множество преимуществ, что позволяет использовать оптическое волокно как несущую среду в различных областях техники — от телефонии до компьютеров и систем автоматизации.

Стр. 11 из 211      1<< 8 9 10 11 12 13 14>> 211

Лицензия