Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 162 из 210      1<< 159 160 161 162 163 164 165>> 210

ACPI

Статья добавлена: 28.08.2017 Категория: Статьи

ACPI ACPI (Advanced Configuration and Power Interface — усовершенствованный интерфейс управления конфигурацией и питанием) — открытый промышленный стандарт, впервые выпущенный в декабре 1996 года и разработанный совместно компаниями HP, Intel, Microsoft, Phoenix и Toshiba, который определяет общий интерфейс для обнаружения аппаратного обеспечения, управления питанием и конфигурации материнской платы и устройств. Спецификация 2.0 была представлена в сентябре 2000 года. Она распространяется на более широкий спектр компьютеров, включая корпоративные серверы, настольные системы и ноутбуки. Кроме того, в ACPI 2.0 добавлена поддержка 64-разрядных микропроцессоров для серверов, поддержка различных типов памяти, устройств PCI и PCI-X. Версия спецификации 3.0b была выпущена 10 октября 2006 года. На настоящий момент версией спецификации ACPI является версия 5.0, выпущенная 6 декабря 2011 года. Задача ACPI — обеспечить взаимодействие между операционной системой, аппаратным обеспечением и BIOS материнской платы. ACPI пришло на смену технологии APM (англ. Advanced Power Management). Наиболее известной частью стандарта ACPI является управление питанием, имеющее два значительных усовершенствования по сравнению с предшествующими стандартами. Во-первых, концепция ACPI передаёт управление питанием операционной системе (ОS). Такая модель выгодно отличается от существовавшей до этого модели APM (Advanced Power Manager), в которой за управление питанием ответственен BIOS материнской платы, а возможности ОС в этом отношении сильно ограничены. В модели ACPI BIOS предоставляет операционной системе методы для прямого детализированного управления аппаратным обеспечением. Таким образом, ОС получает практически полный контроль над энергопотреблением. Другая важная часть спецификации ACPI — это предоставление на серверах и настольных компьютерах таких возможностей по управлению питанием, которые до того были доступны только на портативных компьютерах. Например, система может быть переведена в состояние чрезвычайно низкого энергопотребления, в котором питание подается лишь на оперативную память (а возможно, и она находится без питания), но при этом прерывания некоторых устройств (часы реального времени, клавиатура, модем и т. д.) могут достаточно быстро перевести систему из такого состояния в нормальный рабочий режим (то есть «пробудить» систему).

Прямые и инверсные логические сигналы микропроцессорной технике.

Статья добавлена: 28.08.2017 Категория: Статьи

Прямые и инверсные логические сигналы микропроцессорной технике. В микропроцессорной технике применяются прямые и инверсные логические сигналы. В случае прямых сигналов логическому нулю соответствует низкий уровень сигнала, логической единице - высокий. В случае инверсных сигналов все наоборот. Инверсию сигналов обозначают разными способами: перед названием сигнала ставят знак "минус", над именем проводят черту, после имени ставят обратную косую черту или решетку. В данной статье используется последний способ. Управляющие сигналы обычно инверсные. Это так называемые L (Low)-активные сигналы, у которых активный уровень сигнала - низкий. Это нужно, чтобы: повысить помехозащищенность, которая у ТТЛ несимметричная. Входные токи стремятся подтянуть уровень к высокому, и в случае прямых H (High)-активных сигналов это действует согласно с помехой, чреватой ложными срабатываниями. При L-активных сигналах входной ток противодействует помехе. Особенно важно использовать L-активность для сигналов, передаваемых по кабелям. Кроме того, L(Low)-активные сигналы обеспечивают возможность нескольким источникам управлять одной и той же линией. L-активная линия "подтягивается" к высокому уровню резистором, а активный сигнал может вводить любой подключенный к ней вентиль с открытым коллектором (можно с тристабильным выходом). В компьютерах типа IBM PC принцип L-активности управляющих сигналов интерфейса был нарушен дважды: Н-активность имеют сигналы запросов аппаратных прерываний IRQx и каналов прямого доступа DRQx. Это привело к невозможности совместного использования линий прерываний и каналов DMA. Обозначение и порядок бит и байт шин адреса/данных. В шине данных D0 обозначает самый младший бит LSB (Least Significant Bit), a D7 - старший бит байта - MSB (Most Significant Bit). Иногда в описании интерфейсов биты данных обозначаются как D1...D8, при этом младший бит - D1. На рисунках принято старший бит изображать слева, а младший - справа. Обозначение D[7:0] относится к группе сигналов D7, D6,..., D1, D0, a D[0:7] - к тем же сигналам, но в порядке естественной нумерации. В двухбайтном слове, размещаемом в памяти, принят LH-порядок следования: адрес слова указывает на младший байт L (Low), а старший байт Н (High) размещается по адресу, на единицу большему. В двойном слове порядок будет аналогичным - адрес укажет на самый младший байт, после которого будут размещены следующие по старшинству. Этот порядок естествен для процессоров Intel. На рис. 1 показаны диапазоны и способы представления двоичных нуля и единицы. Эффективность любого сигнального протокола состоит в конечных значениях логических уровней (напряжение, соответствующее логическому "0" и "1") и их дискретности (разности между уровнями логического "0" и "1"). Если на первый параметр влияет технология изготовления кристалла, то от второго параметра напрямую зависит быстродействие. Уменьшая напряжение логических уровней, мы добиваемся уменьшения потребляемой и рассеиваемой мощности. Уменьшая второй параметр, мы уменьшаем время, требуемое на переключение транзистора - следовательно, увеличиваем быстродействие. Разделение сигналов на группы по логическим уровням способствует уменьшению влияния электромагнитной интерференции и повышению эффективности протокола. Например, технология Rambus основана на новом электрическом интерфейсе RSL (Rambus Signaling Levels), который дает возможность получить результирующую частоту 800 МГц и более, а также использовать стандартный CMOS-интерфейс сигналов ввода-вывода ядра ASIC. Высокоскоростной протокол сигналов RSL использует низковольтный перекос номинальных напряжений логического "0" (1,8В) и логической "1" (1,0В) с перекосом всего-навсего в 800 мВ.

РАБОТА КОМПЬЮТЕРА С ВИДЕОИЗОБРАЖЕНИЯМИ. СТАНДАРТЫ И ПРИНЦИПЫ ПОСТРОЕНИЯ ВИДЕОИЗОБРАЖЕНИЙ.

Статья добавлена: 28.08.2017 Категория: Статьи

РАБОТА КОМПЬЮТЕРА С ВИДЕОИЗОБРАЖЕНИЯМИ. СТАНДАРТЫ И ПРИНЦИПЫ ПОСТРОЕНИЯ ВИДЕОИЗОБРАЖЕНИЙ. Подготовка и проведение презентаций, телеконференции, подготовка изображений и запись их на видеомагнитофон, просмотр видеоизображений на мониторе компьютера, формирование рекламных роликов, видеоклипов, редактирование видеоизображений, создание спецэффектов и многое другое стало уже привычным, но не все представляют, что объединение компьютерной графики и телевизионного изображения потребовало немалых усилий у разработчиков аппаратуры и программных средств из-за существенных различий в стандартах и принципах построения изображения и ограничений по времени при обработке больших объемов информации. 1. Преобразователи форматов. TV-адаптеры (конверторы) или как их иногда называют преобразователи форматов позволяют на обычном телевизоре просматривать изображения созданные на компьютере и записывать эти изображения на видеомагнитофон. TV-адаптеры поддерживают телевизионные стандарты NTSC, PAL и европейский стандарт PAL/SECAM. Преобразователи форматов (например, VGA-TV конвертор) могут представлять собой отдельные внешние устройства со стандартным интерфейсом компьютерного монитора на входе и каким-либо телевизионным сигналом на выходе. В простейшем варианте конвертор только преобразует сигналы из RGB в один из интерфейсов телеприемника, но при этом требуется установка разрешения и частот синхронизации графического адаптера, совпадающих со стандартом телеприемника. Для пользователя PC эти ограничения малоприятны, а иногда и невыполнимы. Более сложные конверторы имеют собственную буферную память, которая заполняется вновь оцифрованным видеосигналом, снятым с выхода графического адаптера. На телевизионный выход информация из буфера выдается уже с телевизионной частотой. Буфер может хранить одну, несколько или все строки экрана. От этого зависят ограничения на режим разрешения и соотношения частот регенерации графического адаптера и телевизионного монитора (в последнем случае они вообще могут быть не связанными). Естественно, эти три варианта сильно отличаются по сложности и цене (конвертор с полноэкранным буфером самый дорогой). Однако, когда графический адаптер выводит движущееся изображение, смена которого привязана к кадровой синхронизации, при несовпадении кадровых частот на телевизионном экране движение будет иска¬жаться. Общей проблемой конверторов является необходимость борьбы с мерцанием (flickering): поскольку в телеприемниках используется чересстрочная развертка, горизонтальная полоса шириной в пиксел будет отображаться с частотой 25 или 30 Гц, что улавливается глазом. Возможны и варианты встроенных адаптеров (ISA-карта), подключаемых к шине расширения PC и внутреннему разъему графической карты (VFC или VAFC). Некоторые модели конверторов позволяют накладывать графическое изображение на внешний видеосигнал (например, для создания титров). Ввиду ограниченной горизонтальной разрешающей способности телеприемников (полоса пропускания шире 5 МГц для телевизора как такового бессмысленна), возможность замены монитора телевизором для регулярной работы сомнительна. В стандарте NTSC обеспечивается разрешение 640х480, в PAL и SECAM - 800х600. Однако такое разрешение реально достижимо только при использовании интерфейса S-Video. Композитный сигнал, как было сказано выше, не обеспечивает столь высокого разрешения. Microsoft рекомендует устанавливать на новых графических картах кроме стандартного интерфейса VGA (RGB-Analog) выход композитного сигнала и S-Video. Более того, рекомендуется предусмотреть возможность одновременной работы VGA-монитора и TV-приемника, что не так-то просто обеспечить из-за различия параметров синхронизации. 2. Видеооверлейные платы (overlay board). Вывод видеоизображения на экран компьютерного монитора используется гораздо чаще. Видеоизображение выводится в окно, занимающее весь экран или его часть. Поскольку вывод видео перекрывает часть графического изображения, такой способ вывода называют видеооверлеем (Video Overlay), а платы, обеспечивающие данный режим, называют видеооверлейными (overlay board). Эти платы позволяют изменять размер окна видео так же, как и размер любого окна в Windows. В оверлейной плате для видеоизображения имеется специальный «слой» видеопамяти, независимой от видеобуфера графического адаптера. В этом слое содержится оцифрованное растровое отображение каждого кадра видеосигнала. Поскольку для видеосигнала принято цветовое пространство в координатах Y-U-V, в этом слое памяти пикселы также отображаются в этом пространстве, а не в R-G-B, свойственном графическим адаптерам. В такой системе движущееся видеоизображение, видимое на экране монитора, существует лишь в оверлейном буфере, но никак не попадает в видеопамять графического адаптера и не передается ни по каким внутренним цифровым шинам компьютера. В видеопамяти графического адаптера «расчищается» окно, через которое «выглядывает» видеоизображение из оверлейного буфера. Некоторый цвет (комбинация бит RGB) принимается за прозрачный. Оверлей¬ная логика сравнивает цвет очередного пиксела графического буфера с этим прозрачным, и если он совпадает, вместо данного пиксела выводится соответствующий пиксел видеооверлея. Если цвет не совпадает с прозрачным, то выводится пиксел из графического буфера. Таким образом, имея доступ к пикселам графического буфера, можно на видеоизображение накладывать графику для организации видеоэффектов или вывода в видеоокне «всплывающих» (PopUp) меню. Наложение производится на уровне потока бит сканируемых пикселов, который может передаваться в оверлейную плату через разъем Feature Connector. 3. Фрейм-граббер (Frame Grabber или Video Capture).

Модуль питания процессора по спецификации Intel VRD 11.1

Статья добавлена: 28.08.2017 Категория: Статьи

Модуль питания процессора по спецификации Intel VRD 11.1 У многих материнских плат на базе новых чипсетов Intel модуль питания процессора построен по новой схеме, описанной в спецификации Intel VRD 11.1, основная задача которой состоит в том, чтобы обеспечить стабильность работы в самом широком диапазоне нагрузок, в том числе при стремительном переходе от высокой нагрузки к низкой и наоборот. Тем самым гарантируется более эффективное потребление энергии за счет быстрого погружения в экономичный режим "кратковременного сна" и возврата в рабочее состояние. В частности, у процессора появляется возможность подачи сигнала "низкая нагрузка", который должен быть отработан схемой его питания. Разработчики в полной мере использовали данную функцию на своих платах, и даже дополнили ее фирменной программно-аппаратной системой управления энергопотреблением, получившей название "Dynamic Energy Saver Advanced" (DES Advanced). Система DES Advanced позволяет экономить среднее энергопотребление системы за счет эффективного управления двумя компонентами – процессором и схемой его питания (VRM). Аппаратная часть системы базируется на новых ШИМ-контроллерах компании Intersil. Формированием тока заданной величины в современных схемах питания процессоров занимаются интеллектуальные мультифазные ШИМ-контроллеры. Включая по очереди пары транзисторных ключей, они подают на дроссели импульсы тока определенной длительности, чтобы на выходе получился ток нужной величины (рис. 1).

Способы защиты от потери данных на жестком диске.

Статья добавлена: 28.08.2017 Категория: Статьи

Способы защиты от потери данных на жестком диске. К сожалению, полностью застраховаться от возможной потери данных на жестком диске практически нереально. А вот значительно снизить вероятность потери можно, но для этого необходимо предпринять ряд достаточно простых мер. 1. Защищайте жесткий диск от перегрева. Современные жесткие диски отличаются от более устаревших моделей скоростью вращения пластин винчестеров, что составляет на сегодняшний день - 5400 – 7200 об/мин, а у моделей класса Hi-End – 10000 и даже 15000 об/мин. Естественно увеличение скорости вращения, не могло не сказаться на нагревании носителя, что в свою очередь может привести к выходу из строя электроники или заклиниванию двигателя. Именно поэтому на все высокопроизводительные HDD необходимо устанавливать вентилятор. 2. Защищайте жесткий диск от вибраций. Жесткие диски очень чувствительны ко всякого рода вибрациям и тряске. Неосторожное обращение с накопителем может привести к разрушению головок и дисков, что повлечет за собой потерю данных. На сегодняшний день, вибрации и удары при транспортировке и установке винчестера в компьютер являются одними из самых широко распространенных причин поломок носителей информации в первые месяцы их работы. 3. Используйте источник бесперебойного питания. При резких скачках напряжения и нестабильности электросети, что является довольно частым явлением, устройство бесперебойного питания поможет защитить ваш hdd от повреждения. Кроме того, источник бесперебойного питания позволит на небольшой промежуток времени продлить работу компьютера, что сделает возможным сохранить результаты вашей работы и корректно завершить работу ОС. 4. Не забывайте регулярно делать резервные копии. Самый надежный способ снизить риск потери данных – резервирование. Важную информацию необходимо регулярно копировать на другой носитель: CD или DVD, другой винчестер, ленточный накопитель. Желательно не хранить резервные копии в том же помещении, где хранятся оригинальные данные. 5. Используйте антивирусные программы. Среди множества существующих на сегодняшний день вирусов есть и такие, которые могут разрушить ваши данные, хранящиеся на жестком диске компьютера. Установка антивируса и его регулярное обновление позволит защитить информацию. 6. Регулярно проводите дефрагментацию жесткого диска. Регулярная дефрагментация жесткого диска позволяет перегруппировать данные так, чтобы файлы были записаны в последовательных секторах. Эта операция позволяет не только повысить скорость работы с диском, но и существенно повысить вероятность восстановления информации при возникновении проблем. 7. Используйте дисковые утилиты соблюдая меры предосторожности.

Технологии Plug&Play видеосистем.

Статья добавлена: 28.08.2017 Категория: Статьи

Технологии Plug&Play видеосистем. Для идентификации мониторов ассоциацией VESA был предложен стандарт DDC (Display Data Chanel), который позволяет определять мониторы различных производителей, и, кроме того, позволяет получать и другую информацию о параметрах и характеристиках любого монитора. Разработка стандарта DDC была обусловлена развитием технологии Plug&Play, которая подразумевает, что внешнее устройство должно “сообщить” о себе основные сведения для того, чтобы операционная система обеспечила правильное конфигурирование и настройку оборудования путем поиска и установки наиболее подходящего драйвера устройства. Для оптимальной настройки изображения необходимо учитывать размер экрана, тип монитора, его цветовые характеристики, поддерживаемые режимы (разрешающая способность), параметры входных сигналов, а, кроме того, желательно знать поддерживается ли монитором система энергосбережения DPMS. В стандарте DDC вся информация о мониторе передается из монитора в ПК по последовательному интерфейсу, состоящему из двух линий: линии синхронизации и линии данных. При разработке DDC в качестве основы был применен интерфейс I2C, линия синхронизации интерфейса в DDC получила название DDC_CLK. На этой линии формируется последовательность импульсов, тактирующих передачу данных. Для передачи каждого байта на линии DDC_CLK генерируется девять импульсов: 8 – для передачи битов байта и 1 – бит подтверждения – ACK (квитирующий бит). Тактовые сигналы формируются устройством, запрашивающим информацию (ведущим устройством), т.е. видеокартой ПК. Частота импульсов DDC_CLK может быть любой – ограничен только ее верхний предел величиной 100 кГц. Однако последние версии стандарт DDC уже позволяют передавать данные с частотой до 400 кГц. Линия данных интерфейса DDC получила название DDC_DATA. На этой линии сигнал устанавливается либо в “высокий”, либо в “низкий” уровень, в зависимости от передаваемых данных, с частотой следования тактовых импульсов DDC_CLK. Считывание информации, выставленной на DDC_DATA, происходит при каждом тактовом импульсе на DDC_CLK. Уровни напряжений сигналов DDC_DATA и DDC_CLK – до 5 В, т.е. “высокому” уровню соответствует напряжение 5В, а “низкому” уровню сигналов соответствует напряжение около 0В. Началом цикла передачи байта данных на интерфейсе DDC является условие Start – сигнал DDC_DATA переводится из высокого уровня в низкий при высоком уровне сигнала DDC_CLK. Завершается цикл передачи байта переводом сигнала DDC_DATA из низкого уровня в высокий при высоком уровне сигнала DDC_CLK – это условие Stop. При передаче данных состояние сигнала DDC_DATA может изменяться только при низком уровне сигнала DDC_CLK. Биты данных стробируются фронтом импульсов DDC_CLK. После передачи 8 битов передающее устройство (монитор) на один такт освобождает линию данных для получения подтверждения о приеме байта принимающим устройством (компьютером). Принимающее устройство во время этого девятого такта формирует бит ACK, устанавливая сигнал на DDC_DATA в низкий уровень. При запросе от ПК, монитор передает 128 байтов данных, которые содержат следующую информацию: - фирма-производитель монитора; - модель монитора; - дата изготовления; - серийный номер; - система команд управления; - размеры экрана; - тип монитора; - параметры входных сигналов; - поддерживаемые режимы энергосбережения стандарта DPMS; - дисплейная гамма; - цветовые характеристики люминофоров; -поддерживаемые стандартные режимы работы; - параметры нестандартных поддерживаемых режимов. Для размещения и хранения всей этой информации в мониторе предусмотрено применение микросхемы памяти – ПЗУ, точнее сказать, микросхемы электрически перепрограммируемого ПЗУ (EEPROM, E2PROM, FLASH). В качестве таких микросхем обычно используются микросхемы семейства 2421 и 240х (2401, 2402 и т.д.), реже применяются микросхемы семейства 93Cx6 (93С06, 93С46, 93С66 и т.д.). Несмотря на значительный объем полученной информации о характеристиках и параметрах монитора, операционные системы семейства Windows пользователю сообщают лишь наименование фирмы производителя монитора и его модель. Более подробную информацию о мониторе можно получить только с помощью специализированных утилит или программ, которые часто поставляются вместе с мониторами на дискетах или CD-ROM. Ассоциацией VESA было предложено несколько вариантов стандарта DDC: DDC1, DDC2B, DDC2A/B. Эти стандарты в дальнейшем дорабатывались и совершенствовались, и на сегодняшнее время существуют несколько версий (ревизий) каждого из стандартов.

Использование и особенности стандарта USB 3.0

Статья добавлена: 28.08.2017 Категория: Статьи

Использование и особенности стандарта USB 3.0 Предыдущие версии USB (стандарта USB 1.1 и USB 2.0) обеспечивали скорость обмена от 12 Мбит/с до 480 Мбит/с соответственно. Интерфейс USB 2.0, представленный в 2000 г., был огромным шагом вперед по сравнению с предыдущей ревизией стандарта. Однако по прошествии 10 лет периферийные устройства, подключаемые к этой шине, настолько развились, что на сегодняшний день ее возможностей абсолютно недостаточно. Пришло время обновления - USB 3.0. Новая версия интерфейса USB 3.0 поддерживает полнодуплексный режим передачи данных, а пропускная способность возросла до 4,8 Гбит/с, то есть примерно в десять раз. Были улучшены возможности энергосбережения, но обратная совместимость с устройствами USB 2.0 и USB 1.1 сохранена. SuperSpeed USB – это радикальное обновление стандарта. Стандарт SuperSpeed Universal Serial Bus (USB 3.0) предполагает десятикратное (до 4,8 Гбит/сек.) увеличение скорости передачи данных в сравнении с USB 2.0. Таким образом пиковая производительность USB 3.0 - 5 Гбит/с, а это означает, что файл размером 25 Гб можно передать приблизительно за 70 секунд (у соединения USB 2.0 на то же задание уйдёт 14 минут). Поэтому SuperSpeed USB считают идеальным решением для массы задач, таких как копирование больших изображений, видео или резервирование данных на внешний носитель. Стандарт USB 3.0 предлагает нам более оптимизированное энергетическое управление и полную совместимость с USB 2.0. Новые возможности по управлению питанием SS (superspeed) устройств и уровнем общения с ними, делают возможной ситуацию, когда хост и девайс могут договориться о том, как бы им вместе с компьютером впасть "в спячку", и как вообще «внешний девайс» относится к понижению мощности в данный момент? В новом протоколе SS существует даже некое понятие роутинговой информации в пакетах (чтобы не бегать ко всем устройствам через хаб). В USB 3.0 внесены изменения в протокол опроса, благодаря чему контроллер не станет беспрерывно обращаться к подключённому устройству в ожидании передачи данных и тратить зря энергию. Вместо этого сами устройства будут посылать сигнал, когда инициирована операция передачи. Все же, в первую очередь, новый стандарт разрабатывался для устройств категории "sync-and-go", то есть для мобильных телефонов, плееров и внешних накопителей. Среди первых продуктов с его поддержкой будут и внешние накопители, для которых существующий интерфейс уже накладывает ряд ограничений. Кроме того, USB 3.0 может использоваться для трансляции HD-видео.

Оптоэлектронные приборы в копировальных аппаратах.

Статья добавлена: 28.08.2017 Категория: Статьи

Оптоэлектронные приборы в копировальных аппаратах. Оптоэлектронные приборы широко используются в современных копировальных аппаратах в качестве основы для построения различного рода датчиков. Термином «оптоэлектронные приборы» обобщаются приборы и устройства, содержащие излучатели и приемники, взаимодействующие друг с другом. Приборы, в которых выполняется лишь один вид преобразования, — излучатели, индикаторы, фотоприемники, и другие рассматривают отдельно как элементы оптоэлектронных приборов и систем. Оптопары. Оптопарой называют оптоэлектронный прибор, в котором конструктивно объединены в общем корпусе излучатель на входе и фотоприемник на выходе (рис. 1, а), взаимодействующие друг с другом оптически и электрически. Связи между компонентами оптопары могут быть прямыми или обратными, положительными или отрицательными, одна из связей (электрическая или оптическая) может отсутствовать. Иногда оптопару отождествляют с оптроном, однако последний термин является более широким. Между элементами оптрона может быть осуществлена как оптическая, так и электрическая связь (прямая или обратная, положительная или отрицательная). Вход и выход оптрона также могут быть как электрическими, так и оптическими соответственно. В настоящее время широкое распространение получили лишь оптроны с прямой оптической связью, т. е. оптопары. Основные функциональные разновидности этих приборов представлены на рис. 1 б,в. Оптопара с прямой оптической и обратной электрической связью (рис. 1,6) используется как элемент развязки, т. е. оптрон с оптическим входом и выходом, и представляет собой преобразователь световых сигналов. Это может быть простое усиление (ослабление) интенсивности света, преобразование спектра или направления поляризации, преобразование некогерентного излучения в когерентное и т. п. Если в таком оптроне фотоприемник и излучатель многоэлементные, то он может выполнять функцию преобразователя изображений. В оптроне с электрической и оптической связями (рис. 1,в) при определенных условиях может осуществляться частичная или полная регенерация (восстановление) входного сигнала за счет обратной связи, в силу чего на вольт-амперной характеристике появляется падающий участок или несколько участков — такой прибор получил название регенеративного оптрона. В регенеративном оптроне могут реализоваться любые комбинации видов входных и выходных сигналов (электрических или оптических).

Архитектура Kaby Lake (Intel).

Статья добавлена: 28.08.2017 Категория: Статьи

Архитектура Kaby Lake (Intel). Согласно планам Intel, в мобильной сфере на смену Skylake придёт новая архитектура Kaby Lake (в третьем квартале текущего года и несколько позднее — в настольном секторе). А вот 10-нм чипов Cannonlake придётся ждать ещё год: они тоже появятся в третьем квартале, но в 2017 году. Платформа Skylake дебютировала в третьем квартале 2015 года и была приурочена к выпуску новой операционной системы Microsoft Windows 10. Сейчас есть огромное количество решений на базе Skylake, от сверхэкономичных до оверклокерских, но в случае с Cannonlake Intel планирует ещё более увеличить масштабируемость платформы: базовые принципы архитектуры будут одними и теми же у самых экономичных процессоров с теплопакетом 4,5 ватта и у мощных серверных Xeon для многопроцессорных систем. Сейчас Intel, несомненно, доминирует на рынке производительных процессоров, но, согласно имеющимся данным, компания хочет начать обновление процессорных линеек уже в третьем квартале этого года. Мобильная версия Kaby Lake будет представлена в составе ноутбуков, ультрабуков и решений класса «два в одном». Как мобильные, так и настольные процессоры Kaby Lake (рис. 1,2) будут иметь несколько линеек: Kaby Lake U, Kaby Lake Y, Kaby Lake H и Kaby Lake S. Не исключены и иные варианты, такие как Skylake-C (см. табл. 1).

Технология SMART.

Статья добавлена: 28.08.2017 Категория: Статьи

Технология SMART. Для повышения надежности большинство производителей применяют в жестких дисках различные технологии в том числе и варианты технологии SMART. Обычно предусматривается автоматическая проверка целостности данных, состояния поверхности пластин, пере¬нос информации с критических участков на нормальные и другие операции без участия пользователя. В случае нарастания фатальных ошибок программа своевременно выдаст сообщение о необходимости принятия срочных мер по спасению данных. Основные положения SMART были согласованы несколько лет назад с участием всех крупных производителей дисков и компьютеров. Для анализа надежности жесткого диска используются две группы параметров. Первая характеризует параметры естественного старения жесткого диска: - число циклов включения/выключения диска; - накопленное число оборотов двигателя за время работы; - количество перемещений головок Вторая группа параметров характеризует текущее состояние накопителя: - высота головки над поверхностью диска; - скорость обмена данными между дисками и буфером (кэш-памятью); - количество переназначений плохих секторов (когда вместо испорченного сектора подставляется свободный исправный); - количество ошибок поиска; - количество операций перекалибровки; - скорость поиска данных на диске и др. Обычно вся информация записывается на служебных дорожках, недоступных аппаратным и программным средствам общего применения. SMART (Self-Monitoring, Analysis and Reporting Technology - технология самотестирования, анализа и отчетности) - это новый промышленный стандарт, описывающий методы предсказания появления ошибок жесткого диска. При активизации системы SMART жесткий диск начинает отслеживать определенные параметры, чувствительные к неисправностям накопителя или указывающие на них. На основе отслеживаемых параметров можно предсказать сбои в работе накопителя. Если на основе отслеживаемых параметров вероятность появления ошибки возрастает, SMART генерирует для BIOS или драйвера операционной системы отчет о возникшей неполадке, который указывает пользователю на необходимость немедленного резервного копирования данных до того момента, когда произойдет сбой в накопителе.

Аналоговые интегральные микросхемы в лазерных принтерах. Операционные усилители.

Статья добавлена: 28.08.2017 Категория: Статьи

Аналоговые интегральные микросхемы в лазерных принтерах. Операционные усилители. Операционным усилителем (ОУ) называют усилитель напряжения, предназначенный для выполнения различных операций с аналоговыми сигналами: их усиление или ослабление, сложение или вычитание, интегрирование или дифференцирование, логарифмирование или потенцирование, преобразование их формы и др. Все эти операции ОУ выполняет с помощью цепей положительной и отрицательной обратной связи, в состав которых могут входить сопротивления, емкости и индуктивности, диоды, стабилитроны, транзисторы и некоторые другие электронные элементы. Поскольку все операции, выполняемые при помощи ОУ, могут иметь нормированную погрешность, то к его характеристикам предъявляются определенные требования. Требования эти в основном сводятся к тому, чтобы ОУ как можно ближе соотвествовал идеальному источнику напряжения, управляемому напряжением с бесконечно большим коэффициентом усиления. А это значит, что входное со¬противление ОУ должно быть равно бесконечности, а следовательно, входной ток должен быть равен нулю. Выходное сопротивление должно быть равно нулю, а следовательно, нагрузка не должна влиять на выходное напряжение. Частотный диапазон усиливаемых сигналов должен простираться от постоянного напряжения до очень высокой частоты. Поскольку коэффициент усиления ОУ очень велик, то при конечном значении выходного напряжения напряжение на его входе должно быть близким к нулю. входная цепь ОУ обычно выполняется по дифференциальной схеме, а это значит, что входные сигналы можно подавать на любой из двух входов, один из которых изменяет полярность выходного напряжения и поэтому называется инвертирующим, а другой не изменяет полярности выходного напряжения и называется — неинвертирующим. Условное схематическое обозначение дифференциального операционного усилителя приведено на рис.1,а. Инвертирующий вход можно отмечать кружочком или писать около него знак минус (-). Неинвертирующий вход или совсем не отмечается, или около него пишется знак плюс (+). Два вывода ОУ используются для подачи на него напряжения питания +ЕП и -ЕП. Положительное и отрицательное напряжение питания обычно имеют одно и то же значение, а их общий вывод одновременно является общим выводом для входных и выходного сигналов (в дальнейшем выводы питания изображаться не будут).

3D XPoint - новый тип памяти.

Статья добавлена: 28.08.2017 Категория: Статьи

3D XPoint - новый тип памяти. Компании Intel и Micron совместными усилиями создали новый тип системы хранения данных, который в одну тысячу раз быстрее самой передовой памяти NAND Flash. Новый тип памяти, получивший название 3D XPoint, показывает скорости чтения и записи в тысячу раз превышающие скорость обычной памяти NAND, а также обладает высокой степенью прочности и плотности. Новая память в десять раз плотнее чипов NAND и позволяет на той же физической площади сохранять больше данных и при этом потребляет меньше питания. Intel и Micron заявляют, что их новый тип памяти может использоваться как в качестве системной, так и в качестве энергозависимой памяти, то есть, другими словами, ее можно использовать в качестве замены как оперативной RAM-памяти, так и SSD. В настоящий момент компьютеры могут взаимодействовать с новым типом памяти через интерфейс PCI Express, однако Intel говорит, что такой тип подключения не сможет раскрыть весь потенциал скоростей новой памяти, поэтому для максимальной эффективности памяти XPoint придется разработать новую архитектуру материнской платы.

Стр. 162 из 210      1<< 159 160 161 162 163 164 165>> 210

Лицензия