Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 173 из 179      1<< 170 171 172 173 174 175 176>> 179

FDI - Flexible Display Interface.

Статья добавлена: 28.08.2017 Категория: Статьи

FDI - Flexible Display Interface. Flexible Display Interface появился еще в рамках LGA1156. Но не сразу — в чипсете P55 этого интерфейса не было: дебютировал он в Н55 и Н57, выпущенных одновременно с процессорами со встроенным видеоядром, благо другим и не нужен. Что в рамках этой, что в рамках последующей платформы он являлся единственным способом, позволяющим воспользоваться интегрированным GPU. Более того — был у Intel и чипсет P67 с заблокированным FDI, что не позволяло разводить на платах на нем видеовыходы. Впрочем, от такого подхода компания позднее отказалась. Вот с чем сложности остались, так это с подключением большого количества дисплеев с высоким разрешением. Точнее, пока речь шла о двух цифровых источниках изображения и разрешениях не выше, чем Full HD, все было хорошо. Как только начались попытки выбраться за эти рамки — сразу же начались проблемы. В частности, то, что найти плату с поддержкой 4К на HDMI невозможно, прямо намекает, что это не производители последних намудрили. Да, Intel продвигает DisplayPort, не требующий лицензионных отчислений за использование, однако в бытовой-то электронике его днем с огнем не сыщешь. Да и появление третьего видеовыхода в Ivy Bridge на деле оказалось теоретическим преимуществом GPU новой линейки: быстро выяснилось, что задействовать его можно лишь на платах хотя бы с парой DP. Что фактически выполнялось лишь в случае дорогих моделей с поддержкой Thunderbolt.

Информация, которую хранят в флэш-памяти.

Статья добавлена: 28.08.2017 Категория: Статьи

Информация, которую хранят в флэш-памяти. По содержимому памяти можно узнать практически всю информацию о данной модели копира или принтера. Все ключевые события, произошедшие с копиром, фиксируются во флэш-памяти в определенных ячейках. Зная их адрес и содержимое можно узнать об последних ошибках в копире, состояние картриджей, количество отпечатанных страниц и т.д. На практике содержимое памяти приводится в шестнадцатеричном виде, поэтому, что бы узнать реальное значение нужно каждую пару чисел (один байт информации), привести к десятеричному виду. Во флэш-памяти, например, может храниться ниже следующая информация: • код для последней обнаруженной ошибки, который обычно состоит из двух байтов, при ошибке аппарат выдает на панель оператора код в виде световой индикации (значение кода берется из памяти по этому адресу); • значение количества страниц, которые были пройдены через аппарат; • значение полного числа раз включения аппарата; • количество картриджей, вставленных в копир, подсчет количества введется программным путем через процедуру замены картриджа; • значение общего количества часов, нахождения аппарата в рабочем состоянии; • признак обнулении счетчика времени периода сервисного обслуживания (сообщение об необходимости профилактического обслуживания в сервисном центре); • значение общего количества захватов бумаги, как правило значение соответствует количеству отпечатанных копий, или немного больше, так как в процессе копирования не все листы бумаги захватываются правильно; • общее количества обнаруженных заеданий бумаги, которые произошли при печати; • общее количество обнаруженных аварийных остановов, которые произошли при печати; • серийный номер контроллера управления (запись производиться на заводе изготовителе и соответствует серийному номеру контроллера управления); • серийный номер аппарата (запись производиться на заводе изготовителе) и т. п.

ПРИЧИНЫ ОТКАЗОВ ПРИ ЭКСПЛУАТАЦИИ ЖЕСТКИХ ДИСКОВ.

Статья добавлена: 28.08.2017 Категория: Статьи

ПРИЧИНЫ ОТКАЗОВ ПРИ ЭКСПЛУАТАЦИИ ЖЕСТКИХ ДИСКОВ. Жесткий диск очень чувствительное к тряскам и ударам устройство и поэтому требует к себе очень внимательного отношения. Любой отказ или неисправность в накопителе может обернуться частичной или полной потерей очень важной и порой бесценной информации. Значительная доля неисправностей в накопителях является следствием непредусмотренных спецификациями механических воздействий на них. Отказы, возникающие при эксплуатации носителей информации на жестких дисках, могут быть вызваны очень многими причинами, в том числе и производственными дефектами. Внешние механические воздействия, жесткие удары, сотрясения, толчки, являются неявными причинами отказов жестких дисков в 50% случаев. Накопитель в 95% случаев получает ударные механические повреждения именно в те, моменты, когда он находится вне корпуса компьютера. Одной из частых причин отказов является падение жесткого диска. Падение, даже с очень небольшой высоты, может вызвать внутренние повреждения в накопителе, причем внешне корпус винчестера будет выглядеть безупречно, и на нем не будет следов механического воздействия. Подобные неисправности опасны тем, что они проявят себя позже, постепенно ухудшая параметры накопителя, они несут угрозу хранящимся на накопителе данным. Поэтому только спустя некоторое время пользователи видят на своем накопителе результаты удара о котором даже и не подозревали. Больше всего жесткие диски уязвимы перед механическими воздействиями в тот момент, когда они извлечены из оригинальной упаковки изготовителя, которая специально разработана для защиты накопителя после того, как он покинул заводские пределы. Жесткий диск, установленный в корпус компьютера, в какой-то мере защищен от внешних воздействий, т.к. в большинстве случаев корпус PC поглощает энергию ударного воздействия, и степень воздействия на накопитель может быть значительно снижена. Чаще всего жесткие диски испытывают ударные воздействия в моменты транспортировок от поставщика к потребителю и в процессе его установки в корпус PC недостаточно квалифицированным или плохо осведомленным персоналом. В России ситуация часто усугубляется тем, что партии винчестеров перевозят неподготовленным для этого транспортом, не предусматривая никаких дополнительных мер защиты на случай столкновения автомобиля или просто резкого торможения. Обычно фирмы-продавцы комплектующих, при продаже винчестеров передают их покупателю упакованными в одну единственную электростатическую оболочку. И нет гарантии, что сам продавец, не стукнул нечаянно этот диск, а это очень вероятно (достаточно посмотреть, как с винчестерами обращаются). Сильное ударное воздействие жесткий диск может испытать, если его случайно заденут монтажным инструментом, например отверткой, или стукнут два винчестера между собой, или накопитель получит удар в результате усиленного проталкивания винчестера на его посадочное место в корпусе компьютера. Наиболее пагубными являются удары с большой энергетической силой и короткой длительностью воздействия, (обычно это составляет сотни G за менее чем одну миллисекунду). Ударные воздействия выходящие за пределы «ударостойкости» стандартных накопителей могут вызвать внутри накопителей следующие нежелательные последствия: • шлепок головок о поверхность диска; • проскальзывание и смещение дисков в пакете; • появление люфта в подшипниках.

Платы форматеров.

Статья добавлена: 28.08.2017 Категория: Статьи

Платы форматеров. Современный цифровой копир, многофункциональное устройство, лазерный принтер, имеют, как правило двухуровневую систему управления состоящую из платы форматера и одной или нескольких плат второго уровня. Для проведения ремонтных работ плат управления принтеров, МФУ, цифровых копировальных аппаратов необходимо знание основ построения этих сложных компонентов в объеме, примерно таком же, как и для ремонта системных плат персональных компьютеров. Скорость работы лазерного принтера и его производительность во многом зависят от блока обработки изображения (форматера данных), который предназначен для обработки цифрового изображения, принятого в его оперативную память. Обработка принятого из компьютера изображения может быть очень сложной, например, в цифровых копирах и лазерных принтерах часто используются сложные алгоритмы обработки, обеспечивающие повышенное качество печати за счет сглаживания зубчатых и неровных краев при печати шрифтов, слежения за обеспечением высокой четкости печати векторных элементов; выполняется интел¬лектуальный анализ типа линий, автоматически разли¬чаются фотографии, текст и рисунки в пределах одной страницы; в зависимости от характера задания использу¬ются разные алгоритмы печати; осуществляется управление размером точки для обеспечения разрешения класса 2400 dpi из реальных 600 dpi путем пошагового (1-16 стадий) горизонтального контроля размера каждой точки и т. д. Плата форматера (рис. 1) по своему составу аналогична системной плате персонального компьютера (но ее стоимость гораздо выше системной платы: $700-800, поэтому ее ремонт дает значительную экономию средств). На ней находится достаточно мощный быстродействующий универсальный 32-х или 64-х разрядный микропроцессор. Микросхема используемая на форматере обычно является заказной, в качестве ее ядра используется достаточно мощный процессор, например, аналогичный Intel 960, или Power PC 405CR и др., кроме того в микросхеме имеется ряд специализированных портов ввода/вывода.

Драйверы безколлекторных двигателей.

Статья добавлена: 28.08.2017 Категория: Статьи

Драйверы безколлекторных двигателей. Безколлекторный двигатель (прямоприводной электродвигатель постоянного тока, вентильный двигатель, электронный двигатель) в лазерном принтере применяется для перемещения лазерного луча и для механизма протяжки, все вентиляторы имеют подобный принцип работы. Там где требуется постоянная, высокая и стабильная скорость вращения – там применяются безколлекторные электродвигатели. Этот тип двигателя характеризуется следующими преимуществами: - малая неравномерность мгновенной скорости вращения - низкий уровень акустических шумов - небольшие габариты, масса, потребляемая мощность - высокая надежность - низкая стоимость Для управления безколлекторными двигателями применяются специальные микросхемы - драйверы двигателя. Эти микросхемы выполняют следующие функции: - усиление и обработка сигналов с датчиков положения ротора - усиление и обработка сигнала от датчика частоты вращения - формирование сигналов коммутации обмоток статора - стабилизация частоты вращения. Условно микросхемы драйверов можно разделить на мощные и маломощные. У маломощных - двигатель подключается через транзисторные усилительные ключи, например микросхема AN8261 (рис. 1).У мощных - обмотки статора подключаются непосредственно к выводам микросхемы и в качестве примера такого драйвера можно привести микросхему AN8245K (рис. 2).

Варианты топологии цветных фильтров.

Статья добавлена: 28.08.2017 Категория: Статьи

Варианты топологии цветных фильтров. Цветные фильтры размещаются на верхней (ближней к глазу наблюдателя) подложке на внутренней стороне LCD-панели. В качестве материалов для цветных фильтров используются пленки различных материалов красителей. Нанесение пленок может происходить по различным технологиям: осаждением из растворов, осаждением из газовой среды, печатным методом. Осаждение пленок цветов проводится последовательно для получения каждого фильтра цвета (красного, зеленого и голубого). После нанесения каждого слоя пленки проводится операция фотолитографии. При использовании печатного метода фотолитография не требуется. Накатка цветных, фильтров проводится через трафареты. Варианты топологии цветных фильтров приведены на рис. 1. Лучшими показателями по равномерности передачи цветов обладает топология DELTA. Сложность управления формирования сигналов управления для всех трех топологий одинакова. Однако технология получения цветных фильтров по топологии DELTA самая сложная. Во многих современных ЖК-дисплеях в основном используется полосковая топология (Stripe). Топология «дельта» применялась в ЖК-дисплеях портативных телевизоров.

Функции сетевого адаптера.

Статья добавлена: 28.08.2017 Категория: Статьи

Функции сетевого адаптера. Cетевые адаптеры обеспечивают сопряжение компьютера и среды передачи информации с учетом принятого в данной сети протокола обмена информацией. Адаптер должен выполнять ряд функций, количество и суть которых во многом зависят от типа конкретной сети. Все функции сетевого адаптера можно разделить на две большие группы. Первая группа включает в себя функции сопряжения адаптера с компьютером (магистральные функции), а вторая - функции по организации обмена в сети (сетевые функции). Функции первой группы определяются интерфейсом компьютера, к которому подключается сетевой адаптер, и не отличаются большим разнообразием. Функции второй группы определяются типом сети и могут быть самыми различными в зависимости от типа сетевого кабеля, принятого протокола управления, топологии сети и т.д. Магистральные (канальные, шинные) функции сетевых адаптеров обеспечивают организацию их сопряжения с одной из локальных шин системного интерфейса персонального компьютера. Для процессора сетевой адаптер это обычный контроллер, соответствующий определенным стандартам, в котором имеется ряд прогрмммно-доступных регистров, каждый из которых имеет свое функциональное назначение. Процессор управляет любым контроллером через его программно-доступные регистры, записывая и читая информацию с помощью команд IN, OUT, INS, OUTS. Сетевой адаптер, как любой другой контроллер имеет свой набор команд. Получив от процессора, выполняющего программу сетевого взаимодействия, команду (через программно-доступный регистр или регистры), контроллер отрабатывает команду автономно, реализуя, в том числе, функции обмена по сетевому кабелю с другим сетевым адаптером или несколькими сетевыми адаптерами. Команда может вызвать в сетевом адаптере выполнение очень сложных преобразований информации по программам, выполняемым специализированным процессором, встроенным в плату сетевого адаптера. Кроме того, контроллер может выполнять ряд вспомогательных аппаратных функций инициируемых аппаратными сигналами или записью управляющей информации в его программно-доступный регистр, формировать сигнал запроса на обслуживание (прерывание). Некоторые сетевые адаптеры имеют в своем составе аппаратуру, позволяющую ему выполнять функции устройства, инициирующего операцию обмена на интерфейсе (Master). Сопряжение с компьютером возможно не только через системную магистраль, но и через внешние интерфейсы, например, через интерфейс USB. Низкая скорость передачи информации по этим интерфейсам не позволяет организовать эффективную работу сетевых адаптеров, для которых очень важна скорость обмена. Данные передаются из памяти компьютера в адаптер или из адаптера в память с помощью прямого доступа к памяти, или совместно используемой области памяти или программируемого ввода-вывода. К сетевым функциям адаптеров, относят функции, которые обеспечивают реализацию принятого в сети протокола обмена. Часть этих функций может выполняться как аппаратурой адаптера, так и программным обеспечением персонального компьютера (перенос части функций на программные средства позволяет упростить аппаратуру адаптера и существенно увеличить гибкость обмена, но ценой замедления работы). К основным сетевым функциям адаптера, относятся нижеследующие функции:

Рекомендации по ремонту источников питания персональных компьютеров.

Статья добавлена: 28.08.2017 Категория: Статьи

Рекомендации по ремонту источников питания персональных компьютеров. Практика показывает, из всех элементов системного блока персонального компьютера (ПК) наибольшее число отказов приходится на блоки питания. Наибольшее число отказов блоков питания обычно связано с «человеческим фактором». Поэтому перед первым включением источника питания обратите внимание на положение переключателя типа питающей сети (рекомендуется сразу адаптировать аппарат под нашу сеть, исключив (методом выпаивания) все элементы, влекущие возможность ошибочного включения источника). Всегда любой ремонт начинается с очень внимательного предварительного внешнего осмотра ремонтируемого объекта. Во время пробных включений источника питания (во время ремонта и после проведения его ремонта) рекомендуется вместо предохранителя включить лампу накаливания на 250В/100Вт. Этот прием дает реальный шанс не пожечь силовые транзисторы высокочастотного преобразователя. Если при включении питания лампа будет гореть тускло, то можно установить предохранитель на место, а в случае яркого свечения лампы, питание необходимо выключить и продолжить поиски неисправности. Проявления неисправности блока питания, которые могут иметь место при неисправности блока питания, могут быть очевидными и неочевидные. Неочевидные причины неисправности - для определения неисправного эле¬мента требуют дополнительной диагностики системы, т. к. явно не проявляют себя, но тем не менее они влияют на работоспособность источника питания. Например, мы видим ошибки системы, которые не указывают на неисправность блока питания: - различного рода ошибки и зависания при включении электропитания; - неожиданная перезагрузка системы и периодические зависания во время обычной работы; - хаотически возникающие ошибки четности данных и другие ошибки оперативной памяти; - одновременная остановка жесткого диска и вентилятора, перегрев компьютера из-за выхода из строя вентилятора (из-за того, что нет +12 В); - перезагрузка системы при незначительном снижении напряжения сети 220В; - «удары» электрического тока во время прикосновения рукой к корпусу компьютера или к разъемам; - небольшие статические разряды, нарушающие работу сети. - ранняя подача сигнала «Питание в норме» (из-за неисправности в цепи формирования этого сигнала) может приводить к искажениям CMOS-памяти (наиболее часто встречающиеся типовые неисправности, непосредственно связанные с нарушением работоспособности источника питания системного блока ПК см. в табл. 1). Выходные напряжения желательно проверять цифровым мультиметром, обеспечивающим необходимую точность измерений.

Диагностическая информация от программ BIOS (INT 13/xx).

Статья добавлена: 28.08.2017 Категория: Статьи

Диагностическая информация от программ BIOS (INT 13/xx). После выполнения программ BIOS (INT 13/xx) в регистре АН выдается код состояния (статус возврата). При успешном возврате: в регистре флагов процессора флажок CF= 0 в регистре АН=0. При ошибке: в регистре флагов процессора флажок CF=1. В регистре АН - значения кодов состояния/ошибки диска.

Как обеспечить нормальную работу компьютера.

Статья добавлена: 28.08.2017 Категория: Статьи

Как обеспечить нормальную работу компьютера. Для нормальной работы компьютера, напряжение питающей сети должно быть достаточно стабильным, а уровень помех в ней не должен превышать предельно допустимой величины. При подключении компьютера к сети переменного тока, от которой питаются устройства большой мощности, перепады напряжения, возникающие при включении и выключении этого оборудования, немедленно сказываются на его работе. При работе мощных агрегатов в сети могут возникать переходные процессы (всплески напряжения) амплитудой до 1000 В и выше, которые могут просто вывести из строя блок питания компьютера. Если для питания компьютера используется отдельная линия, то и это не исключает появления в ней выбросов напряжения, поскольку это зависит от качества всей сети энергоснабжения здания или района. Выбирая место и способ подключения системы к сети, необходимо соблюдать следующие правила: • подключение компьютеров осуществлять к отдельным линиям питания со своими предохранителями (желательно автоматическими); • перед подключением необходимо проверить сопротивление шины заземления (оно должно быть низким); • выходное напряжение линии должно находиться в допустимых пределах, и не должно быть помех и всплесков напряжения; • подключение компьютера к сети должно производится с помощью трехштырьковых вилок, нельзя пользоваться переходниками для розеток с двумя гнездами, поскольку система при этом останется без заземления; • не пользуйтесь без крайней необходимости удлинителями (выбирайте те из них, которые рассчитаны на подключение мощных потребителей энергии) ведь уровень помех в сети возрастает при увеличении внутреннего сопротивления линии, т.е. чем длиннее соединительные провода и чем меньше их сечение, тем он выше; • для подключения устройств, не имеющих отношения к компьютерам, лучше использовать другую розетку.

API (Application Programming Interface).

Статья добавлена: 28.08.2017 Категория: Статьи

API (Application Programming Interface). API (Application Programming Interface) – графический интерфейс программ - предоставляeт разработчикам аппаратного и программного обеспечения средства создания драйверов и программ, работающих быстрее на большом числе платформ. 3D API позволяет программисту создавать трехмерное программное обеспечение, использующее все возможности 3D-ускорителей не прибегая к низкоуровнему программированию. 3D API делятся на стандартные (универсальные: OpenGL, Direct 3D и др.) и собственые (специализированные: Glide, Rredline и др.). Стандартные API поддерживают широкий спектр 3D-ускорителей и освобождают программистов от низкоуровнего программирования. Собственный 3D API предназначен для одного семейства 3D-ускорителей и освобождает программистов от программирования на физическом уровне. Использование 3D API требует применения драйверов для этого 3D API. Наличие драйверов для Direct 3D и OpenGL для Windows 98 является обязательным требованием ко всем 3D-ускорителям. В настоящее время существует несколько API: - OpenGL (фирма SGI), - Direct 3D (фирма Microsoft), - Glide (фирма 3Dfx). Glide поддерживается только набо¬ром микросхем, выпускаемым фирмой 3Dfx, а остальные API поддерживаются большинством со¬временных видеоадаптеров. Direct 3D является частью API, называемого DirectX. Современное программное обеспечение широко использует графические интерфейсы Х Windows и OpenGL.

Регистры ввода-вывода универсального хост-контроллера шины USB

Статья добавлена: 28.08.2017 Категория: Статьи

Регистры ввода-вывода универсального хост-контроллера шины USB. USB выстраивает необычные отношения между устройством и драйвером. Драйвер не управляет устройством напрямую, а имеет доступ только к четырем типам операций приема-передачи данных: передача массива, управление, прерывание и изохронные передачи. Все типы передач реализованы на уровне программного интерфейса. Стандартизация классов устройств USB и программного обеспечения способствует росту популярности данного способа расширения персональных компьютеров среди широкого круга пользователей и производителей компьютерной техники. Драйвер интерфейса USB управляет работой хост-контроллера через регистры. Регистры универсального хост-контроллера принят разделять на две группы: группу конфигурационных регистров PC (USB PCI Configuration Registers) и группу регистров пространств ввода-вывода (USB Host Controller IO Space Registers). Ниже рассматриваются регистры ввода-вывода хост-контроллера. Непосредственная работа с конфигурационными регистрами из прикладных программ нежелательна (может привести к «зависанию» системы). Для описания режима доступа к данным в регистрах USB используются следующие стандартные обозначения: RO - возможно только считывание данных; WO - возможна только запись данных; R/W - разрешено выполнение как записи, так и считывании данных; R/WC - разрешено считывание данных и сброс отдельных разрядов регистра (запись единицы в некоторый разряд регистра приводит к тому, что этот разряд сбрасывается в ноль). Список регистров ввода-вывода хост-контроллера шины USB при веден в табл.1. Доступ к этим регистрам осуществляется через группу портов ввода/вывода, базовый адрес которой задан в конфигурационном регистре USBBA.

Стр. 173 из 179      1<< 170 171 172 173 174 175 176>> 179

Лицензия