Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Блок питания ЖК-монитора.

Блок питания ЖК-монитора.

                 Наиболее ремонтопригодным и поэтому интересным в плане изучения, является блок питания ЖК-монитора (AC/DC адаптер или по-другому сетевой импульсный блок питания). Назначение его элементов и схемотехника более конкретны и легче в понимании. По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.

AC/DC адаптер служит для преобразования переменного напряжения сети 220В в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 вольт). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 - 700 В и частотой около 50 кГц, которое подаётся на электроды люминесцентных ламп, встроенных в ЖК-панель.

Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис. 1) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 1 и рис. 2 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 - 249.

QIP Shot - Image: 2016-11-03 17:18:42 

Рис. 1

 

В схеме на рис. 2 применены сдвоенные диоды с барьером Шоттки (MBR20100). Аналогичные диодные сборки (SRF5-04) применены в блоке питания (рис. 3) монитора Acer AL1716 (приведённые принципиальные схемы являются примерами, а реальные схемы импульсных блоков питания могут несколько отличаться).

QIP Shot - Image: 2016-11-03 17:19:33 

Рис. 2

Микросхема TOP245Y (рис. 3) представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ-контроллер и мощный полевой транзистор, который переключается с частотой от десятков до сотен килогерц и формирует импульсы в первичной обмотке трансформатора (отсюда пошло и название блок питания – импульсный).

QIP Shot - Image: 2016-11-03 17:20:41 

Рис. 3

 

Процесс работы такого импульсного блока питания сводится к следующему:

  1) Выпрямление переменного сетевого напряжения 220В.

Выпрямление сетевого напряжения 220В выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе формируется напряжение немного больше чем сетевое. На рис. 5 показан диодный мост, а рядом фильтрующий электролитический конденсатор (емкостью 82 мкФ 450 В).

  2) Преобразование напряжения и его понижение с помощью трансформатора.

Коммутацию постоянного напряжения 220-240В с частотой в несколько десятков – сотен килогерц в обмотку высокочастотного импульсного трансформатора выполняет микросхема TOP245Y (рис. 5). Импульсный трансформатор выполняет ту же роль, что и обычный трансформатор, но работает он на более высоких частотах, во много раз больше, чем 50 герц (поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди). В импульсном трансформаторе необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 герц. В результате трансформатор получается очень компактным. Кроме того,  импульсные блоки питания очень экономичны и у них высокий КПД.

  3) Выпрямление пониженного трансформатором переменного напряжения.

Для выпрямления пониженного переменного напряжения используют мощные выпрямительные диоды, в нашем примере (см. рис. 3) использованы диодные сборки с маркировкой SRF5-04. Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом (обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но часто используются для выпрямления повышенных напряжений (20 – 50 вольт), что нужно иметь ввиду при замене дефектных диодов.

У диодов Шоттки тоже есть некоторые особенности, которые необходимо учитывать. Эти диоды имеют малую ёмкость перехода и способны быстро переключаться (переходить из открытого состояния в закрытое). Это положительное свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 В (против 0,6 – 0,7 В у обычных диодов). Это свойство повышает их КПД. Но есть у диодов Шоттки и негативные свойства, которые ограничивают их более широкое использование в электронной технике - они очень чувствительны к превышению обратного напряжения (при превышении обратного напряжения диод Шоттки необратимо выходит из строя). Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоков питания. Об этом надо помнить и учитывать при проведении работ по диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи (на схеме рис. 1 она обозначена как R15- C14). На печатной плате  блока питания ЖК монитора Acer AL1716 (рис. 4) также имеются демпфирующие цепи, состоящие из SMD резистора номиналом 10 Ом (R802, R806) и конденсатора (C802, C811),  которые защищают диоды Шоттки (D803, D805).

QIP Shot - Image: 2016-11-03 17:21:36 

Рис. 4

 Как правило, диоды Шоттки используются в низковольтных цепях с обратным напряжением, не выше 10 – 18 вольт, а если требуется получение напряжения в несколько десятков вольт (от 20 до 50В), то применяются диоды на основе p-n перехода. Диоды Шоттки чувствительны к перегреву, в связи с этим их, как правило, для отвода тепла устанавливают на алюминиевый радиатор (отличить диод на основе p-n перехода от диода Шоттки можно по условному графическому обозначению на схеме (рис. 5).

QIP Shot - Image: 2016-11-03 17:23:38 

а) Условное обозначение диода с барьером Шоттки.

QIP Shot - Image: 2016-11-03 17:24:17 

б) Условное обозначение диода на основе p-n перехода.

Рис. 5

 После выпрямительных диодов всегда ставятся электролитические  конденсаторы, обеспечивающие  сглаживание пульсаций постоянных выходных напряжений (12 В; 5 В; 3,3 В) которые, запитывают все блоки LCD-монитора.

 


Лицензия