Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 10 из 31      1<< 7 8 9 10 11 12 13>> 31

Предвыборка массива памяти в GDDR5X.

Статья добавлена: 26.12.2018 Категория: Статьи по мониторам

Предвыборка массива памяти в GDDR5X. Из-за необходимости ожидания накопления (или стекания) заряда на конденсаторе (ячейке) быстродействие DRAM ограничено временем (t1) заряда/разряда (что зависит от размера емкости). Для постоянного хранения заряда ячейки (рис. 1) еще необходимо ее регенерировать - перезаписывать содержимое для восстановления нормального заряда единицы. Предварительная выборка массива памяти. Термин «предварительная выборка» описывает параллелизм, используемый во всех современных DRAM-устройствах. Цель предварительной выборки — обеспечить соответствовие умеренной скорости массива внутренней емкостной памяти с гораздо более высокой скоростью ввода-вывода внешнего интерфейса. Этот подход прост и успешно реализован в разработке основ потокового стандарта DDR DRAM (рис. 2). Это позволило производителям DRAM сбалансировать конструктивные ограничения, установленные на время цикла массива, с постоянно растущим спросом на более высокие скорости передачи данных. Устройства GDDR5, GDDR5X и GDDR6 обеспечивают 32-битный интерфейс передачи данных для контроллера памяти; однако во их внутренней архитектуре имеются значительные различия. Когда разработали GDDR5X, то удвоили предварительную выборку массива (16n вместо 8n ).

Управление внешними устройствами ПК (ликбез).

Статья добавлена: 24.12.2018 Категория: Статьи по мониторам

А что есть у процессора для управления внешними устройствами (устройствами ввода, вывода, устройствами внешней памяти)? Есть всего две команды: IN и OUT («чтение порта» и «запись в порт»), и есть аппаратная функция «прерывание» (без которой он в принципе может обойтись). Есть еще две команды — INS, OUTS (без которых он в принципе тоже может обойтись). А что вообще доступно процессору во «внешней среде»? Ему доступны регистры контроллеров внешних устройств (например, видеоадаптера, принтера и др.), регистры чипсета и других микросхем, ячейки оперативной памяти (DRAM или ПЗУ BIOS) для чтения и записи. Внешние устройства подключаются к локальным шинам системного интерфейса через контроллеры (каждый контроллер имеет свой набор команд, которые он обязан выполнять по отношению к своему внешнему устройству). После «начального сброса» контроллер ждет, что процессор перешлет в его соответствующие регистры команду и информацию необходимую для выполнения операции обмена. Непосредственное управление внешним устройством процессор осуществляет выполняя операции записи и чтения (по командам IN и OUT) по отношению к соответствующим регистрам контроллера этого внешнего устройства. Как минимум, любой контроллер должен иметь хотя бы три доступных процессору регистра: - регистр данных; - регистр управления (регистр команд); - регистр состояния. «Сложные» контроллеры могут иметь значительно большее число регистров, и каждый из этих регистров имеет свое функциональное назначение: регистр ошибок, регистр номера головки, регистр номера цилиндра и т. д.. Например, контроллер принтера (параллельный порт) имеет три регистра, а видеоадаптер имеет свыше 60 регистров (каждый из которых имеет свое функциональное назначение, отдельные разряды и группы разрядов регистров тоже имеют свое функциональное назначение), уже поэтому управление видеоадаптером на уровне регистров реализуется очень сложно. Эту проблему для нас решают программы BIOS видеосистемы, которые «знают» как управлять на уровне регистров и команд контроллеров. Каждая такая программа BIOS реализует свою элементарную функцию управления, например видеосистемой:

Графическая архитектура Turing (NVIDIA).

Статья добавлена: 03.12.2018 Категория: Статьи по мониторам

Графическая архитектура Turing (NVIDIA). Ставка в новой архитектуре сделана на трассировку лучей, машинное обучение, GDDR6 и другие новшества. Знаковой функцией для рынка ProViz, является так называемый гибридный рендеринг, сочетающий в себе методы трассировки лучей и традиционное растрирование. Результатом должна стать возможность добиваться в реальном времени качества графики, близкого к полноценной трассировке лучей. Наряду с блоками RT (ядра для трассировки лучей) и тензорными ядрами (для инференса), архитектура Turing приносит новый потоковый мультипроцессор (SM), который по аналогии с Volta добавляет целочисленный исполнительный блок параллельно к каналу данных с плавающей точкой, и новую унифицированную архитектуру кеша с удвоенной по сравнению с предыдущим поколением полосой пропускания. Преимуществом является ускорение создания адресов и производительность в задачах совмещённого умножения-сложения с однократным округлением (Fused Multiply Add, FMA), хотя наверняка новый инструмент будет использоваться во многих задачах.

Видеокарты ПК. Типы графических карт (ликбез).

Статья добавлена: 03.12.2018 Категория: Статьи по мониторам

Видеокарты ПК. Типы графических карт (ликбез). Видеокарта (также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель) — это устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора. Первые мониторы, построенные на электронно-лучевых трубках, работали по телевизионному принципу сканирования экрана электронным лучом, и для отображения требовался видеосигнал, генерируемый видеокартой. Однако эта базовая функция, оставаясь нужной и востребованной, ушла в тень, перестав определять уровень возможностей формирования изображения — качество видеосигнала (чёткость изображения) очень мало связано с ценой и техническим уровнем современной видеокарты. В первую очередь, сейчас под графическим адаптером понимают устройство с графическим процессором (графический ускоритель), который и занимается формированием самого графического образа. Современные видеокарты не ограничиваются простым выводом изображения, они имеют встроенный графический процессор, который может производить дополнительную обработку, снимая эту задачу с центрального процессора компьютера. Например, все современные видеокарты Nvidia и AMD (ATi) осуществляют рендеринг графического конвейера OpenGL и DirectX на аппаратном уровне. В последнее время также имеет место тенденция использовать вычислительные возможности графического процессора для решения и неграфических задач. Обычно видеокарта выполнена в виде печатной платы (плата расширения) и вставляется в разъём расширения, универсальный либо специализированный (PCI Express, ранее AGP). Также широко распространены и встроенные (интегрированные) в системную плату видеокарты — как в виде отдельного чипа, так и в качестве составляющей части северного моста чипсета или ЦПУ (но в этом случае устройство, строго говоря, не может быть названо видеокартой).

Особенности архитектуры GDDR6.

Статья добавлена: 18.12.2018 Категория: Статьи по мониторам

Особенности архитектуры GDDR6. GDDR6 (англ. Graphics Double Data Rate)— 6-е поколение памяти DDR SDRAM, спроектированной для обработки графических данных и для приложений, требующих более высокой рабочей частоты. GDDR6 является графическим решением следующего поколения при разработке стандартов в JEDEC и может работать до двух раз быстрее, чем GDDR5, при этом её рабочее напряжение снижено на 10%. Также одной из отличительных особенностей новой памяти является работа каждой микросхемы в двухканальном режиме. JEDEC и три его крупных участника в лице Samsung, SK Hynix и Micron позиционируют стандарт GDDR6 в качестве преемника GDDR5 и GDDR5X, и NVIDIA подтвердила, что чипы Turing будут его поддерживать. В зависимости от производителя, GDDR6 первого поколения, как правило, позволяет развивать до 16 Гбит/с на единицу полосы пропускания, что вдвое больше, чем у GDDR5 и на 40 %, чем у GDDR5X в картах NVIDIA (ускорители Quadro будут использовать модули Samsung на 14 Гбит/с). Новые графические процессоры и основанные на них карты Quadro также являются первыми продуктами NVIDIA, которые получили видеопамять стандарта GDDR6 (до 48 Гбайт, вдвое больше, чем в Quadro P6000) и одновременно значительно увеличили полосу пропускания. GDDR6 поддерживает одну и ту же 16n предварительную выборку как и у GDDR5X (рис.3), но логически разбивает 32-битный интерфейс данных на два 16-битных канала A и B (для увеличения объема памяти 32-х разрядного канала GDDR5 (рис. 1) можно было использовать 2-е микросхемы GDDR5 в режиме х16 (рис. 2), а в GDDR6 они в одной двухканальной микросхеме).

Правила «безопасной» работы с компьютером (монитором).

Статья добавлена: 26.10.2018 Категория: Статьи по мониторам

Правила «безопасной» работы с компьютером (монитором). Компьютер предоставил нам новые прекрасные и полезные технические возможности, он освободил нас от многих нудных ручных операций, экономит наше время, но нельзя забывать и о том, что неправильное или чрезмерное использование компьютерной техники может нанести ущерб нашему здоровью. Очень «активных» пользователей поджидают совершенно неожиданные неприятности. Какие и как их избежать? Пришло время освоить несколько простых, но очень важных правил компьютерной безопасности.

Режимы HDR, LDR.

Статья добавлена: 25.10.2018 Категория: Статьи по мониторам

Режимы HDR, LDR. Стандартной моделью описания цвета является модель RGB, когда любой цвет получается при смешении трех базовых цветов (красного, зеленого и синего), а интенсивность каждого компонентного цвета задается в виде градаций от 0 до 255. При этом для описания каждого компонентного цвета используется 8 бит, что позволяет описать 256 цветовых оттенков, а всего можно описать 16777216 цветов (224). Отношение максимальной интенсивности к минимальной называется динамическим диапазоном. Так, динамический диапазон модели RGB составляет 256:1. Эту модель описания цвета и интенсивности принято называть Low Dynamic Range (LDR). В то же время человеческий глаз способен видеть гораздо больший диапазон, особенно при малой интенсивности света. Динамический диапазон зрения человека — от 10-6 до 108. Естественно, что увидеть одновременно весь динамический диапазон человеческий глаз не в состоянии, но диапазон, видимый глазом в каждый момент времени, примерно равен 10 000. Как известно, человеческое зрение способно постепенно приспосабливаться к условиям освещенности, то есть перестраиваться с одного динамического диапазона на другой. К примеру, если в темной комнате погасить свет, то первые несколько минут человек ничего не видит. Но постепенно зрение адаптируется под новые условия освещенности, и в темноте начинают появляться силуэты. Понятно, что модель RGB с ее низким динамическим диапазоном плохо соответствует реальным возможностям человеческого зрения. Режим HDR— это режим рендеринга в широком динамическом диапазоне (High Dynamic Range). Идея режима HDR заключается в том, чтобы для описания цветовых компонентов и интенсивности использовать числа с плавающей точкой с большой точностью (например, 16 или 32 бита). Это снимет ограничения модели RGB, а динамический диапазон изображения серьезно увеличится.

Что такое трассировка лучей?

Статья добавлена: 22.10.2018 Категория: Статьи по мониторам

Что такое трассировка лучей? Чем в принципе отличаются разные методы рендеринга (закрашивание) и какие у них существуют достоинства и недостатки? Для расчета глобального освещения, отрисовки теней и других эффектов приходится использовать хитрые хаки, основанные на той же растеризации. В результате, за все эти годы GPU стали весьма сложными, научились ускорять обработку геометрии в вершинных шейдерах, качественно отрисовывать пиксели при помощи пиксельных шейдеров и даже применять универсальные вычислительные шейдеры для расчета физики, постэффектов и множества других вычислений. Но основа работы GPU все время оставалась той же. У трассировки же лучей основная идея совершенно другая, но в теории чуть ли не проще. При помощи трассировки имитируется распространение лучей света по 3D-сцене. Трассировка лучей может выполняться в двух направлениях: от источников света или от каждого пикселя в обратном направлении, далее обычно определяется несколько отражений от объектов сцены в направлении камеры или источника света, соответственно. Просчет лучей для каждого пикселя сцены менее требователен вычислительно, а проецирование лучей от источников света дает более высокое качество рендеринга.

Видеокарты ПК. Типы графических карт.

Статья добавлена: 30.08.2018 Категория: Статьи по мониторам

Видеокарты ПК. Типы графических карт. Видеоадаптер. Видеокарта. Видеокарта (также видеоадаптер, графический адаптер, графическая плата, графическая карта, графический ускоритель) — это устройство, преобразующее графический образ, хранящийся как содержимое памяти компьютера (или самого адаптера), в форму, пригодную для дальнейшего вывода на экран монитора.

Графическое ядро Iris Pro Graphics 580 (GT4e).

Статья добавлена: 23.07.2018 Категория: Статьи по мониторам

Графическое ядро Iris Pro Graphics 580 (GT4e). Графическое ядро Iris Pro Graphics 580 – GT4e содержит: 72 исполнительных устройства, 128 Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц ( ядро GT3 содержит 40 исполнительных блоков). Новое графическое ядро Iris Pro Graphics 580 (GT4e) — имеет 72 потоковых процессора, вычислительная производительность Iris Pro Graphics 580 составляет более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9.

Интерфейс LDI.

Статья добавлена: 03.07.2018 Категория: Статьи по мониторам

Интерфейс LDI. Интерфейс LVDS наибольшее распространение получил как дисплейный интерфейс, но для увеличения пропускной способности этого интерфейса, компания разработчик (National Semiconductor) расширила интерфейс LVDS и удвоила количество дифференциальных пар, используемых для передачи данных, т.е. теперь их стало восемь (см. рис. 1). Это расширение получило название LDI (LVDS Display Interface). Кроме того, в спецификации LDI улучшен баланс линий по постоянному току за счет введения избыточного кодирования, а стробирование производится каждым фронтом такового сигнала (что позволяет вдвое повысить объем передаваемых данных без увеличения тактовой частоты). LDI поддерживает скорость передачи данных до 772 МГц. В документации данная спецификация встречается также и под наименованием OpenLDFM, а у отечественных специалистов отклик в душе нашел термин "двухканальный LVDS".

Применение органических светодиодов (OLED).

Статья добавлена: 25.06.2018 Категория: Статьи по мониторам

Применение органических светодиодов (OLED). OLED или Organic Light Emitting Diode (органический светодиод) – одна из самых перспективных разработок, применение которой найдётся везде: просто для освещения, для создания собственно дисплеев или, например, подсветки LCD-панелей. LED-элементы потребляют очень мало электроэнергии. LED-дисплеями уже сейчас оснащаются многие мобильные телефоны, карманные медиаплееры, ноутбуки/нетбуки, выпускаются и OLED-телевизоры. Преимуществ у OLED-технологии много. Любой OLED-дисплей обеспечивает невероятные контрастность и яркость при меньших, чем у LCD или «плазмы» энергозатратах (данным производителей, обеспечивается контрастность 1000000:1 и выше. OLED-дисплей намного тоньше любого, даже самого современного LCD (толщина OLED составляет считанные миллиметры). Это позволяет создавать тончайшие панели, особое значение данная характеристика имеет для мобильных телефонов и других гаджетов, для которых компактность – первое требование. Даже в том случае, когда OLED играет вспомогательную роль и используется с LCD в качестве элемента подсветки, он положительно влияет на качество изображения. В отличие от обычных ламп, LED-панель обеспечивает абсолютно равномерную подсветку экрана на всей площади. Но пока цена OLED- экранов очень высока, и хотя они очень тонкие, однако никуда не делась потребность во вспомогательном аппаратном обеспечении, поэтому выпускается они на подставке, в которую и спрятана вся вспомогательная электроника. Себестоимость OLED-дисплеев, особенно дисплеев большого размера, очень высока (пока OLED на правах прогрессивной новинки и пользуется большой популярностью снижения цены не ожидается). Долгое время фирмам не удавалось создать панель с большим ресурсом – срок службы среднестатистического OLED заметно уступал сроку службы, например, сопоставимого LCD (но проблема уже решается, и довольно успешно). Сейчас уже никто не сомневается, что за OLED – большое будущее.

Стр. 10 из 31      1<< 7 8 9 10 11 12 13>> 31

Лицензия