Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 21 из 29      1<< 18 19 20 21 22 23 24>> 29

Краткие сведения по техническим терминам, используемым разработчиками в видеосистеме.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Краткие сведения по техническим терминам, используемым разработчиками в видеосистеме. Краткие сведения по техническим терминам и интерфейсам, используемым разработчиками в видеосистеме и мониторах: DDC (Display Data Channel) - цифровой канал для идентификации дисплея и управления параметрами со стороны платы видеоконтроллера. DDI (Digital Display Interface) - цифровой дисплейный интерфейс. Обеспечивается специальным чипсетом или же однокристальным ASIC. Микросхемы DDI производят преобразование входных сигналов в сигналы управления дисплейной системой. DDL (Digital Display Link) - цифровой дисплейный интерфейс. DFP (Digital Flat Panel) - цифровой интерфейс для плоскопанельных дисплеев на базе TMDS, разработанный VESA. Digital Packet Video Link (Digital PV) - видеоинтерфейс для дисплеев высокого разрешения UXGA, разработанный фирмой Toshiba. DMI (Digital Monitor Interface) - цифровой дисплейный интерфейс. GVIFTM (Gigabit Video InierFace) - стандарт цифрового дисплейного интерфейса, разработанный фирмой Sony. Обеспечивает пропускную способность до 1,5 Гбит/с. Такой полосы достаточно даже для передачи видеоданных в формате XGA. При частоте кадров 60 Гц и использовании 24 бит для кодирования цвета каждого пиксела получаем: 1024x768x24x460 = 1,13 Гбит/с. LDI (LVDS Display Interface) - для расширения пропускной способности ранее разработанного интерфейса LVDS фирма National Semiconductor удвоила число линий данных до 8 пар проводников. За счет введения избыточного кодирования в данном интерфейсе улучшен баланс по постоянному току, а стробирование данных производится каждым фронтом тактового сигнала. Поддерживаются скорости передачи до 112 МГц. Торговая марка интерфейса OpenLDI. Mini LVDS - внутренний последовательно-параллельный интерфейс ЖК-дисплея. Соединяет декодирующий контроллер видеоданных на плате управления с драйверами столбцов дисплея. Используется в видеочипсетах Texas Instruments. MPL (Mobile Pixel Link) - дисплейный интерфейс для мобильных устройств нового поколения, разработанный фирмой National Semiconductor. В последовательном интерфейсе MPL используются два сигнала — данные и синхронизация. RSDS (Reduced Swing Differential Signaling) - дифференциальная шина с уменьшенным уровнем ЭМИ, используемая для реализации интерфейса с жидкокристаллическим экраном (ЖКЭ). Стандарт разработан фирмой National Semiconductor и по своей сути напоминает LVDS. Уровни сигналов 200 мВ, ток передатчика 2 мA на линию.

Сенсорные экраны мониторов.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Сенсорные экраны мониторов. Сенсорный экран (от англ. touch screen) - это координатное устройство, позволяющее путем прикосновения (пальцем, стилусом и т.п.) к области экрана монитора производить выбор необходимого элемента данных, меню или осуществлять ввод данных в различных компьютерных системах. Сенсорные экраны наиболее пригодны для организации гибкого интерфейса, интуитивно понятного даже далеким от техники пользователям. С распространением карманных, планшетных компьютеров, устройств для чтения электронных книг и различных терминалов, сенсорные экраны стали такими же привычными, как кнопка и колесо. За прошедший период развития сенсорных экранов было разработано несколько типов этих устройств ввода, основанных на различных физических принципах, которые используются для определения места касания. В настоящее время наибольшее распространение получили два типа дисплеев — резистивные и емкостные. Помимо этого различают экраны, способные регистрировать одновременно несколько нажатий (Multitouch) или только одно. Сенсорные экраны используют всего четыре основных базовых принципа построения: резистивный, емкостный, акустический и инфракрасный (разные источники выделяют шесть, а иногда и семь технологий, по которым производятся сенсорные экраны). Сенсорные технологии всегда требуют, чтобы поверхность LCD монитора либо распознала прикосновение или же наоборот - защитила от касания. Изготовители экранов упорно трудятся, чтобы представить яркие и истинные цветные изображения.

Ощущение цвета человеком определяет принципы построения цветных мониторов компьютеров.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Ощущение цвета человеком определяет принципы построения цветных мониторов компьютеров. Ощущение цвета создается при условии преобладания в цвете волн определённой длины. Но если интенсивность всех волн одинаковая, то цвет воспринимается как белый или серый. Не излучающий волн предмет воспринимается как чёрный. Эти цвета называются ахроматическими. Хроматическими же называются все остальные цвета. Как же глаз улавливает волны? Ощущение цвета складывается в мозге человека, куда идет сигнал из глаза. В глаз же свет попадает, проникнув через роговую оболочку и зрачок, «регистрируясь» на сетчатке, на которой расположены нервные клетки – нейроны с двумя типами рецепторов. Один тип рецепторов – тонкие и длинные – называются палочками. Они ответственны за чёрно-белое зрение в условиях слабой освещённости и не задействованы в условиях полной освещённости. Но так как в процессе эволюции человек выбрал дневной образ жизни, палочек у него ровно столько, чтобы в темноте он мог видеть только контуры предметов. А у охотящихся ночью животных количество и чувствительность палочек позволяет ориентироваться в темноте не хуже, чем днём. За дневное и цветное зрение отвечает другой тип рецепторов. Толстые и короткие колбочки регистрируют информацию о цвете благодаря находящимся в них пигментным клетках. Пигменты в свою очередь делятся на 3 вида – эпитролаб, хлоролаб, цианолаб – каждый из которых чувствителен к одному из трёх основных цветов – красному, зелёному или синему, улавливая волны определённой длины. Длина волны в диапазоне 600–700 нм воспринимается как красный цвет, 500–600 – как зеленый, 400–500 – как синий. Получая сигнал, нейроны отправляют электрические импульсы в мозг, где из информации о пропорциях и интенсивности основных цветов складывается полноцветная картина мира с огромным количеством оттенков. Следовательно, всё, что нас окружает, можно описать, используя всего три основных цвета. Это явление используется, например, в телевизорах и ЭЛТ-мониторах – вся плоскость экрана представляет собой крошечные ячейки, в каждой из которых есть 3 луча – красный, зеленый и синий, образующих в сложении цветную точку. Этот принцип синтеза цвета также используется в сканерах и цифровых фотоаппаратах. Для его обозначения и используется аббревиатура RGB (Red Green Blue).

Многоканальные драйверы для светодиодов (для светодиодной подсветки).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Многоканальные драйверы для светодиодов (для светодиодной подсветки). Многоканальные драйверы для светодиодов TLC5928, TLC5947 (для светодиодной подсветки). Области применения: - светодиодные дисплеи, - подсветка, - информационные доски, - световой дизайн. Драйвер TLC5928. Основные особенности и характеристики (табл. 1): - определение обрыва в канале, - предупреждение о возможном перегреве, - защита от короткого замыкания, - установка тока для всех каналов одним внешним резистором, - последовательный интерфейс, - увеличение числа каналов путем каскадирования.

Схемы управления светодиодными системами видеосистем.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Схемы управления светодиодными системами видеосистем. Современные микросхемы-драйверы светодиодов являются результатом эволюции двух разных по назначению групп электронных компонентов. Первая группа - была ориентированна на построение схем динамического или статического управления индикацией, т.е. это параллельные или сдвиговые регистры, дополненные транзисторными ключами и балластными резисторами. Вторая группа - использовалась для повышения качества отображения (ключи и балластные резисторы заменили на регулируемые источники тока). Так появились первые драйверы светодиодов для применения в различного рода информационных дисплеях. Сегодня едва ли можно найти электронное устройство, в котором не использовались бы светоизлучающие диоды. Эти приборы нашли широкое применение в различных устройствах: от карманного фонарика до OLED-дисплеев, которые, по прогнозам экспертов, в скором времени уже пришли на смену ЖК- и плазменным панелям. Все шире используются светодиоды и в системах уличного и домашнего освещения. Это объясняется рядом достоинств, присущих светодиодам, среди которых: высокий КПД, высокая удельная яркость и относительно низкая стоимость. Cветодиод - это прибор, очень чувствительный к качеству питающего напряжения. Чтобы максимально использовать все возможности светодиодов, необходимо грамотно организовать систему питания (иначе возможно значительное сокращение срока службы прибора или даже выход его из строя). Широкое внедрение энергосберегающих технологий требует обеспечение высокого КПД схемы питания, поэтому создание оптимальной системы питания светодиодов – это сложная схемотехническая задача. В мобильных устройствах с питанием от батареи (таких как ноутбуки, КПК, мобильные телефоны, фотоаппараты, MP3-плееры), эта проблема стоит особенно остро из-за ограниченного времени работы питающего элемента. В данном классе устройств дополнительными ограничениями являются их компактные размеры и отсутствие активного охлаждения. С появлением широкого ассортимента сверх-ярких светодиодов различного спектра свечения и по мере появления новых областей их применения (например, подсветка ЖК-дисплеев, иллюминация, архитектурная подсветка, светофоры и т.д.) потребовалась доработка преобразователей напряжения в части стабилизации не напряжения, а тока, и раздельного или совместного управления несколькими группами светодиодов. Таким образом, в современном понимании драйвер светодиода - достаточно высоко интегрированное решение, которое, в зависимости от области применения, может состоять из следующих функциональных блоков: - DC/DC-преобразователь; - регулируемые или программируемые линейные источники тока (на один или несколько каналов); - ШИМ-контроллеры для индивидуального или общего модулированного управления током через сверхяркие светодиоды; - интерфейс управления; - блок диагностики для обнаружения обрывов в цепи подключения светодиодов, коротких замыканий и других отказов.

Ремонт блока питания LCD монитора (для начинающих ремонтников).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Ремонт блока питания LCD монитора (для начинающих ремонтников). Блоки питания LCD (ЖК) монитора ломаются часто. Чтобы надежно его починить, необходимо обоснованно и корректно указать на неисправные компоненты устройства, а затем составить план по их приобретению и замене. Источники питания в ЖК мониторах бывают двух видов: внутренние и внешние. Первые размещаются в корпусе монитора и соединяются с сетевым кабелем с помощью внешнего разъема 220В. Недостатком такой конструкции является наличие импульсного преобразователя высокой мощности внутри монитора, что может негативно влиять на его работу. При наличии внешнего источника питания монитор поставляется вместе с внешним сетевым адаптером, который тоже по сути представляет собой импульсный преобразователь. Подобное устройство более надежно, так как позволяет исключить из монитора силовой каскад. Для обоих вариантов конструкции монитора возможно количество шин от одной до трех, с напряжением +3.3 В, +5 В, +12 В. Первый показатель предназначается для напряжения питания цифровых микросхем, второй используется в качестве дежурного напряжения, третий – для питания инвертора ламп задней подсветки и драйверов LCD панели. Для внешнего блока питания все три варианта формируются из одной-единственной входной шины 12-24В с помощью преобразователей постоянного тока . Когда блок питания выходит из строя, то диагностику повреждений необходимо выполнять в строгой очередности, чтобы не усугубить поломку. Производить какой-либо ремонт можно только после предварительной диагностики всего устройства. У большинства опытных технических специалистов существуют свои методики диагностики, отработанные на практике годами. Но даже профессионалам крайне желательно придерживаться определенных правил, чтобы свести к минимуму вероятность ошибки при диагностике. Основные правила при ремонте блоков питания Перед тем, как приступить к починке источника питания, необходимо, во-первых, убедиться в исправности шнура и наличии напряжения в сети. Для этого чаще всего достаточно иметь под рукой обычный тестер. Затем стоит осмотреть детали устройства визуально для выявления внешних повреждений радиоэлементов: резисторов, дросселей, трансформаторов, транзисторов, варистора, плавкого предохранителя. Обращать внимание здесь стоит буквально на все: на цвет корпуса и радиоэлементов, наличие следов копоти, сколы, трещины, наличие посторонних предметов.

Типовые неисправности LCD-мониторов, их причины и методы устранения.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Типовые неисправности LCD-мониторов, их причины и методы устранения. Экономика ремонта подсказывает, что ремонт выгоден там, где его можно осуществить быстро и с наименьшими временными затратами. В то же самое время, основу основ любого ремонта составляет диагностика, на которую и уходит зачастую до 90% временных затрат сервисного специалиста. Для быстрой и эффективной работы по ремонту необходимо знать устройство монитора, иметь понятие о его составных элементах и выполняемых ими функциях. Кроме того, специалист должен представлять, как проявляется неисправность того или иного модуля монитора. Конечно же, каждый LCD-монитор имеет свои особенности и определенные схемотехнические решения, применение которых обусловлено характеристиками, функциями и конструктивом монитора, однако подавляющая часть этого класса электронной техники в высочайшей степени однообразна. Причин, приводящих к однообразию в построении LCD-мониторов несколько. Во-первых, основным элементом монитора является жидкокристаллическая панель, которая, в свою очередь – есть законченное функциональное устройство с вполне определенным набором входных управляющих сигналов, т.е. функциональная схема всего монитора определяется именно архитектурой ЖК-панели. А так как практически все панели имеют весьма похожее построение, то это и приводит к тому, что различные схемы, управляющие LCD-панелью, должны формировать одни и те же сигналы, то есть должны строится примерно одинаково. Во-вторых, производителей LCD-панелей в мире не так уж и много (их можно пересчитать по пальцам одной руки) и поэтому в мониторах различных фирм и торговых марок используются одни и те же ЖК-панели. В-третьих, практически все современные интерфейсы между монитором и компьютером, а также между схемой управления и LCD-панелью стандартизированы, т.е. производители мониторов и панелей находятся в достаточно узких рамках этих стандартов.

Ремонт ЖК-мониторов (с инвертором ламп подсветки).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Ремонт ЖК-мониторов (с инвертором ламп подсветки). Для того, чтобы на профессиональном уровне выполнять ремонт ЖК- монитора, необходимо в первую очередь понимать, из каких основных электронных узлов и блоков состоит данное устройство и какие функции выполняет каждый элемент электронной схемы. Многие считают, что успех в ремонте любого прибора заключается в наличии принципиальной схемы конкретного аппарата, но надо помнить, что «знание некоторых основных принципов заменяет нам незнание множества мелких фактов» (на самом деле, при определенном уровне подготовки принципиальная схема нужна не всегда). Жидкокристаллический монитор состоит из нескольких основных функциональных блоков: ЖК-панель, плата управления, блок питания и инвертор ламп подсветки. Жидкокристаллическая панель. Жидкокристаллическая панель представляет собой завершённое устройство. Производители жидкокристаллических мониторов, как правило, используют в своих изделиях ЖК-панели выпускаемые небольшим числом производителей, как готовые комплектующие изделия для ЖК-мониторов. В ЖК-панель, кроме жидкокристаллической матрицы, встраивают люминесцентные лампы подсветки, матовое стекло, поляризационные цветовые фильтры и электронную плату дешифраторов, формирующих из цифровых сигналов RGB напряжения для управления затворами тонкоплёночных транзисторов (TFT). ЖК-панель является завершённым функциональным устройством компьютерного монитора и, как правило, при ремонте разбирать её не следует (за исключением необходимости замены вышедших из строя ламп подсветки). Например, рассмотрим (рис. 1, а) ЖК-панель CHUNGHWA CLAA170EA. Как видим на рис. 1, на задней стороне ЖК-панели расположена довольно большая печатная плата, к которой от основной платы управления подключен многоконтактный шлейф (сама печатная плата обычно защищена металлической планкой).

Идентификация мониторов по стандарту DDC (Display Data Chanel).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Идентификация мониторов по стандарту DDC (Display Data Chanel). Для идентификации мониторов ассоциацией VESA был предложен стандарт DDC (Display Data Chanel), который позволяет определять мониторы различных производителей, и, кроме того, позволяет получать и другую информацию о параметрах и характеристиках любого монитора. Разработка стандарта DDC была обусловлена развитием технологии Plug&Play, которая подразумевает, что внешнее устройство должно “сообщить” о себе основные сведения для того, чтобы операционная система обеспечила правильное конфигурирование и настройку оборудования путем поиска и установки наиболее подходящего драйвера устройства. Для оптимальной настройки изображения необходимо учитывать размер экрана, тип монитора, его цветовые характеристики, поддерживаемые режимы (разрешающая способность), параметры входных сигналов, а, кроме того, желательно знать поддерживается ли монитором система энергосбережения DPMS. В стандарте DDC вся информация о мониторе передается из монитора в ПК по последовательному интерфейсу, состоящему из двух линий: линии синхронизации и линии данных. При разработке DDC в качестве основы был применен интерфейс I2C, линия синхронизации интерфейса в DDC получила название DDC_CLK. На этой линии формируется последовательность импульсов, тактирующих передачу данных. Для передачи каждого байта на линии DDC_CLK генерируется девять импульсов: 8 – для передачи битов байта и 1 – бит подтверждения – ACK (квитирующий бит). Тактовые сигналы формируются устройством, запрашивающим информацию (ведущим устройством), т.е. видеокартой ПК. Частота импульсов DDC_CLK может быть любой – ограничен только ее верхний предел величиной 100 кГц. Однако последние версии стандарт DDC уже позволяют передавать данные с частотой до 400 кГц. Линия данных интерфейса DDC получила название DDC_DATA. На этой линии сигнал устанавливается либо в “высокий”, либо в “низкий” уровень, в зависимости от передаваемых данных, с частотой следования тактовых импульсов DDC_CLK. Считывание информации, выставленной на DDC_DATA, происходит при каждом тактовом импульсе на DDC_CLK. Уровни напряжений сигналов DDC_DATA и DDC_CLK – до 5 В, т.е. “высокому” уровню соответствует напряжение 5В, а “низкому” уровню сигналов соответствует напряжение около 0В. Началом цикла передачи байта данных на интерфейсе DDC является условие Start – сигнал DDC_DATA переводится из высокого уровня в низкий при высоком уровне сигнала DDC_CLK. Завершается цикл передачи байта переводом сигнала DDC_DATA из низкого уровня в высокий при высоком уровне сигнала DDC_CLK – это условие Stop. При передаче данных состояние сигнала DDC_DATA может изменяться только при низком уровне сигнала DDC_CLK. Биты данных стробируются фронтом импульсов DDC_CLK. После передачи 8 битов передающее устройство (монитор) на один такт освобождает линию данных для получения подтверждения о приеме байта принимающим устройством (компьютером). Принимающее устройство во время этого девятого такта формирует бит ACK, устанавливая сигнал на DDC_DATA в низкий уровень. При запросе от ПК, монитор передает 128 байтов данных, которые содержат следующую информацию: - фирма-производитель монитора; - модель монитора; - дата изготовления; - серийный номер; - система команд управления; - размеры экрана; - тип монитора; - параметры входных сигналов; - поддерживаемые режимы энергосбережения стандарта DPMS; - дисплейная гамма; - цветовые характеристики люминофоров; -поддерживаемые стандартные режимы работы; - параметры нестандартных поддерживаемых режимов. Для размещения и хранения всей этой информации в мониторе предусмотрено применение микросхемы памяти – ПЗУ, точнее сказать, микросхемы электрически перепрограммируемого ПЗУ (EEPROM, E2PROM, FLASH).

Краткая расшифровка некоторых терминов, используемых при описании видеосистем персональных компьютеров.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Краткая расшифровка некоторых терминов, используемых при описании видеосистем персональных компьютеров. Современная видеокарта использующая интерфейс PCI Express (PCI-E) может быть сложнее и значительно дороже материнской платы, она представляет собой очень сложное устройство, но меньших размеров. При описании современных видеокарт и современных технологий применяемых в видеосистеме персональных компьютеров авторы часто используют технические термины не всегда понятные специалистам сервисных служб по ремонту и техническому обслуживанию. Обычно это не влияет на качество ремонта аппаратуры, но при замене видеокарт, при покупке конечно не будет лишним знание технологий, которые использованы в приобретаемой (обычно достаточно дорогой) видеокарте. Шейдерный блок. Технология эта сравнительно новая. Шейдер - это специальная программа, которая использует определенные программируемые регистры видеокарты для создания различных графических эффектов (регистры - это ячейки памяти). Всего различают два вида шейдеров: вершинные и пиксельные шейдеры. Вершинные шейдеры Вершинные шейдеры позволяют гибко управлять ядром T&L (от англ. Transformation and Lighting - Трансформация и Освещение), то есть дают разработчику широкие возможности по аппаратному ускорению обработки вершин полигонов (позволяют производить различные геометрические преобразования и вычисления). В наборе команд вершинных шейдеров присутствуют 127 инструкций. Что же реально можно получить с помощью вершинных шейдеров? Область их применения практически не ограничена (а если и ограничена, то только фантазией разработчика). С помощью этих шейдеров можно получить объемный реалистичный туман, всевозможные деформации объектов, плавный морфинг (это когда одно изображение "перетекает" в другое), эффект motion blur (размытие при движении, т.е. при очень быстром движении объекта, он начинает казаться нечетким, немного смазанным), практически неограниченное количество источников света, и многое другое. Пиксельные шейдеры Пиксельные шейдеры в свою очередь дают широкие возможности по обработке пикселей (экранных точек). Инструкций пиксельных шейдеров всего 8. Эти шейдеры позволяют программисту по шагам управлять процессом наложения текстур и вычисления цвета пикселей. Что это дает разработчику (и пользователям)? Что касается игр, то здесь использование шейдеров, как пиксельных, так и вершинных, возрастает все больше и больше. Во-первых, можно получить в играх (и не только) реальное освещение (ведь с помощью этих шейдеров возможно делать освещение определенных пикселей). Во-вторых, в арсенале разработчика появились микрополигоны, что позволяет создавать реалистичные эффекты взрыва, дождя, пыли, дыма, и т.п. В-третьих, шейдеры дают точные тени (теперь тени образуются даже от малейших неровностей поверхности). С помощью пиксельных шейдеров можно получить еще множество интересных эффектов, но главная суть пиксельных и вершинных шейдеров, я думаю, стала понятной - это добиться максимальной реалистичности. Кстати, в отличии от вершинных шейдеров, нет способа эмулировать пиксельные шейдеры программным путем. Унифицированная архитектура В основе унифицированной архитектуры взята концепция потоковой обработки данных, благодаря которой появилась возможность отправки данных на повторную обработку без ожидания завершения всех стадий конвейера. Также был добавлен новый вид шейдеров – геометрический, работающий с геометрией на уровне примитивов, а не вершин, что способствует разгрузке центрального процессора от лишней работы. Произошел отказ от разделения на пиксельные и вершинные процессоры – теперь они общие, получили новое название – потоковые процессоры (стрим-процессоры) и в любой момент могут быть перепрограммированы под конкретные нужды приложения. Конвейер В предпоследнем поколении видеокарт данные, полученные от центрального процессора, сперва обрабатываются конвейером (он также называется процессором, вершинным блоком): создаются вершины, над которыми производятся преобразования, дополненные вершинными шейдерами (программы, добавляющие некоторые эффекты объектам, например – мех, волосы, водная гладь, блеск и так далее).

Перспективы дисплейных технологий.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Перспективы дисплейных технологий. Дисплейные технологии продолжают развиваться и совершенствоваться. Основные векторы их развития - снижение потребления дисплеев, увеличение уровня интеграции и широкое использование гибридных технологий. Продолжается внедрение технологий объемного изображения и проекционных технологий в секторе мобильных устройств. Доминирующие позиции на рынке пока по-прежнему удерживают ЖК-дисплеи. Последние достижения демонстрируют высокий потенциал этой технологии как в секторе большеформатных дисплеев, так и в секторе мобильных устройств. Проекционные технологии на основе MEMS имеют хорошие перспективы. За последние годы удалось достичь несомненного прогресса в области дисплейной технологии OLED. Расширяется рынок, растет объем продаж изделий с OLED-дисплеями. Однако пока еще стабильность цветокорректирующих добавок, а также долговечность самих органических материалов недостаточна для уровня массового производства. При создании OLED с большими экранами актуальной задачей является трассировка и рассеяние большой энергии. Суммарные токи на OLED c экраном 15–17 дюймов достигают несколько ампер, а выделяемая тепловая мощность - десятков ватт (у ЖК-дисплеев таких проблем нет - в нем свет формируется отдельно от управления модуляцией). Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивная матрица (PM) или активная матрица (AM). Преимущество схемы OLED - объединение модуляции и светоизлучения – пока вызывает дополнительные проблемы, при решении которых приносятся в жертву достоинства OLED. В то же время широкое внедрение сверхмощных светодиодов в качестве излучателей для задней подсветки расширяет возможности ЖК-дисплеев и значительно увеличивает эффективность энергии за счет отказа от применения цветных фильтров (цветные фильтры, как известно, поглощают до 70% световой энергии). Именно для этого требовалось повысить быстродействие ЖК-ячеек до уровня 1–2 мс и использовать раздельную модуляцию по трем цветовым компонентам светового потока. Данная схема последовательной по кадровой цветовой модуляции уже используется в некоторых военных дисплейных системах США. Бурно развивающейся технологии OLED предстоит трудная борьба со своим очень сильным конкурентом - ЖК-дисплеями.

Видеокарта c интерфейсом PCI Express.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Видеокарта c интерфейсом PCI Express. Современная видеокарта использующая интерфейс PCI Express (PCI-E) может быть сложнее и значительно дороже материнской платы, она представляет собой очень сложное устройство, но меньших размеров и с небольшим количеством разъёмов (рис. 1). Размеры видеокарт примерно зависят от того класса, к которому они относятся, так как имеют схематические решения различной сложности: - карты начального – Low-End – класса имеют длину около 15-18 см, - Middle-End - в среднем 20 см, - High-End - длина достигает 25-27 см (это не регламентированное требование, а результат того обстоятельства, что мощные контроллеры требуют более сложного набора сопутствующих компонентов). Печатная плата видеоадаптера состоит из нескольких слоев, каждый из которых содержит тонкие токопроводящие дорожки, компоненты видеокарты устанавливаются только на верхних слоях: лицевой и обратной. С каждой стороны плата покрыта диэлектрическим лаком и усеяна множеством мелких элементов (резисторы, конденсаторы), так что обращаться с видеоадаптером необходимо аккуратно, чтобы не повредить эти элементы. Дорожки на плате объединяют между собой графическое ядро (GPU – графический процессор, видеоядро), видеопамять, раздельные подсистемы питания ядра и памяти (иногда и разъём для дополнительного питания – в случае мощной видеокарты), интерфейсный разъём для подключения к материнской плате, а также разъёмы для подключения мониторов и телевизора.

Стр. 21 из 29      1<< 18 19 20 21 22 23 24>> 29

Лицензия