Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 25 из 27      1<< 22 23 24 25 26 27>> 27

Использование BIOS видеоадаптера для диагностики видеосистемы ПК.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Использование BIOS видеоадаптера для диагностики видеосистемы ПК. С помощью специальных программ системную плату ПК можно превратить в универсальный стенд для диагностирования и ремонта большинства узлов и устройств компьютера. Обычно, достаточно однократного выполнения в отладчике (например, AFD) небольшой специальной программы, запускающей контролируемый процесс в устройстве. Затем с помощью AFD прочитать, например, регистры ошибок и состояний внешнего устройства, коды ошибок в регистре АН микропроцессора т.п.. При создании таких программ удобно использовать программы BIOS. Современным материнским платам с UEFI, не нужна BIOS, но есть модуль поддержки совместимости и поэтому те программы, которым для работы нужен BIOS, могут спокойно могут работать и на компьютерах с UEFI. Для контроля и диагностирования видеосистемы удобно использовать ее BIOS. Стандартная BIOS (Basic Input/Output System) видеоадаптера располагается в видео-ПЗУ (Video ROM), кроме него там находятся экранные шрифты, служебные таблицы и т.п. BIOS не используется видеоконтроллером напрямую. К BIOS обращается только центральный процессор, и в результате выполнения им программ BIOS, происходят обращения к видеоконтроллеру и видеопамяти. На многих современных видеоадаптерах устанавливаются перепрограммируемые посредством электричества видео-ПЗУ (EEPROM, Flash ROM), допускающие обновление BIOS видеоадаптера пользователем с помощью специальной программы из комплекта видеоадаптера. Дисплейный адаптер, как обязательный компонент персонального компьютера, имеет поддержку основных функций в BIOS. Эти функции выполняются через вызов программного прерывания INT 10h - видеосервиса BIOS. Видеосервис позволяет установить видеорежим (BIOS Video Mode), определяющий формат экрана. Первоначально для задания номера режима отводился один байт, и режим устанавливался параметром функции “0h” INT 10h (АН=0, AL=Mode). Режимы 0-13h являются стандартными для адаптеров MDA, CGA, EGA, VGA. Режимы 14h-7Fh используются с нестандартными VGA- или SVGA-расширениями BIOS, они специфичны для конкретных моделей графических адаптеров. Позже появилось стандартизованное расширение функций видеосервиса VBE (VESA BIOS Extensions) для адаптеров VGA, SVGA и были определены новые видеорежимы с двухбайтными номерами старше 100h. Эти режимы устанавливаются параметром функции “4F02h” INT 10h (AX=4F02h, BX=VMode). В пределах возможностей установленного видеорежима видеосервис предоставляет возможности отображения информации на различных уровнях качества. Простейший для программиста телетайпный режим позволяет посылать поток символов, которые будут построчно отображаться на экране с отработкой символов возврата каретки, перевода строки, обеспечивая «прокрутку» изображения при заполнении экрана. Есть функции и для полноэкранной работы с текстом, при которой доступны и атрибуты символа. В графическом режиме имеется возможность чтения и записи пиксела с указанными координатами.

РАБОТА КОМПЬЮТЕРА С ВИДЕОИЗОБРАЖЕНИЯМИ. СТАНДАРТЫ И ПРИНЦИПЫ ПОСТРОЕНИЯ ВИДЕОИЗОБРАЖЕНИЙ.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

РАБОТА КОМПЬЮТЕРА С ВИДЕОИЗОБРАЖЕНИЯМИ. СТАНДАРТЫ И ПРИНЦИПЫ ПОСТРОЕНИЯ ВИДЕОИЗОБРАЖЕНИЙ. Подготовка и проведение презентаций, телеконференции, подготовка изображений и запись их на видеомагнитофон, просмотр видеоизображений на мониторе компьютера, формирование рекламных роликов, видеоклипов, редактирование видеоизображений, создание спецэффектов и многое другое стало уже привычным, но не все представляют, что объединение компьютерной графики и телевизионного изображения потребовало немалых усилий у разработчиков аппаратуры и программных средств из-за существенных различий в стандартах и принципах построения изображения и ограничений по времени при обработке больших объемов информации. 1. Преобразователи форматов. TV-адаптеры (конверторы) или как их иногда называют преобразователи форматов позволяют на обычном телевизоре просматривать изображения созданные на компьютере и записывать эти изображения на видеомагнитофон. TV-адаптеры поддерживают телевизионные стандарты NTSC, PAL и европейский стандарт PAL/SECAM. Преобразователи форматов (например, VGA-TV конвертор) могут представлять собой отдельные внешние устройства со стандартным интерфейсом компьютерного монитора на входе и каким-либо телевизионным сигналом на выходе. В простейшем варианте конвертор только преобразует сигналы из RGB в один из интерфейсов телеприемника, но при этом требуется установка разрешения и частот синхронизации графического адаптера, совпадающих со стандартом телеприемника. Для пользователя PC эти ограничения малоприятны, а иногда и невыполнимы. Более сложные конверторы имеют собственную буферную память, которая заполняется вновь оцифрованным видеосигналом, снятым с выхода графического адаптера. На телевизионный выход информация из буфера выдается уже с телевизионной частотой. Буфер может хранить одну, несколько или все строки экрана. От этого зависят ограничения на режим разрешения и соотношения частот регенерации графического адаптера и телевизионного монитора (в последнем случае они вообще могут быть не связанными). Естественно, эти три варианта сильно отличаются по сложности и цене (конвертор с полноэкранным буфером самый дорогой). Однако, когда графический адаптер выводит движущееся изображение, смена которого привязана к кадровой синхронизации, при несовпадении кадровых частот на телевизионном экране движение будет иска¬жаться. Общей проблемой конверторов является необходимость борьбы с мерцанием (flickering): поскольку в телеприемниках используется чересстрочная развертка, горизонтальная полоса шириной в пиксел будет отображаться с частотой 25 или 30 Гц, что улавливается глазом. Возможны и варианты встроенных адаптеров (ISA-карта), подключаемых к шине расширения PC и внутреннему разъему графической карты (VFC или VAFC). Некоторые модели конверторов позволяют накладывать графическое изображение на внешний видеосигнал (например, для создания титров). Ввиду ограниченной горизонтальной разрешающей способности телеприемников (полоса пропускания шире 5 МГц для телевизора как такового бессмысленна), возможность замены монитора телевизором для регулярной работы сомнительна. В стандарте NTSC обеспечивается разрешение 640х480, в PAL и SECAM - 800х600. Однако такое разрешение реально достижимо только при использовании интерфейса S-Video. Композитный сигнал, как было сказано выше, не обеспечивает столь высокого разрешения. Microsoft рекомендует устанавливать на новых графических картах кроме стандартного интерфейса VGA (RGB-Analog) выход композитного сигнала и S-Video. Более того, рекомендуется предусмотреть возможность одновременной работы VGA-монитора и TV-приемника, что не так-то просто обеспечить из-за различия параметров синхронизации. 2. Видеооверлейные платы (overlay board). Вывод видеоизображения на экран компьютерного монитора используется гораздо чаще. Видеоизображение выводится в окно, занимающее весь экран или его часть. Поскольку вывод видео перекрывает часть графического изображения, такой способ вывода называют видеооверлеем (Video Overlay), а платы, обеспечивающие данный режим, называют видеооверлейными (overlay board). Эти платы позволяют изменять размер окна видео так же, как и размер любого окна в Windows. В оверлейной плате для видеоизображения имеется специальный «слой» видеопамяти, независимой от видеобуфера графического адаптера. В этом слое содержится оцифрованное растровое отображение каждого кадра видеосигнала. Поскольку для видеосигнала принято цветовое пространство в координатах Y-U-V, в этом слое памяти пикселы также отображаются в этом пространстве, а не в R-G-B, свойственном графическим адаптерам. В такой системе движущееся видеоизображение, видимое на экране монитора, существует лишь в оверлейном буфере, но никак не попадает в видеопамять графического адаптера и не передается ни по каким внутренним цифровым шинам компьютера. В видеопамяти графического адаптера «расчищается» окно, через которое «выглядывает» видеоизображение из оверлейного буфера. Некоторый цвет (комбинация бит RGB) принимается за прозрачный. Оверлей¬ная логика сравнивает цвет очередного пиксела графического буфера с этим прозрачным, и если он совпадает, вместо данного пиксела выводится соответствующий пиксел видеооверлея. Если цвет не совпадает с прозрачным, то выводится пиксел из графического буфера. Таким образом, имея доступ к пикселам графического буфера, можно на видеоизображение накладывать графику для организации видеоэффектов или вывода в видеоокне «всплывающих» (PopUp) меню. Наложение производится на уровне потока бит сканируемых пикселов, который может передаваться в оверлейную плату через разъем Feature Connector. 3. Фрейм-граббер (Frame Grabber или Video Capture).

Технологии Plug&Play видеосистем.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Технологии Plug&Play видеосистем. Для идентификации мониторов ассоциацией VESA был предложен стандарт DDC (Display Data Chanel), который позволяет определять мониторы различных производителей, и, кроме того, позволяет получать и другую информацию о параметрах и характеристиках любого монитора. Разработка стандарта DDC была обусловлена развитием технологии Plug&Play, которая подразумевает, что внешнее устройство должно “сообщить” о себе основные сведения для того, чтобы операционная система обеспечила правильное конфигурирование и настройку оборудования путем поиска и установки наиболее подходящего драйвера устройства. Для оптимальной настройки изображения необходимо учитывать размер экрана, тип монитора, его цветовые характеристики, поддерживаемые режимы (разрешающая способность), параметры входных сигналов, а, кроме того, желательно знать поддерживается ли монитором система энергосбережения DPMS. В стандарте DDC вся информация о мониторе передается из монитора в ПК по последовательному интерфейсу, состоящему из двух линий: линии синхронизации и линии данных. При разработке DDC в качестве основы был применен интерфейс I2C, линия синхронизации интерфейса в DDC получила название DDC_CLK. На этой линии формируется последовательность импульсов, тактирующих передачу данных. Для передачи каждого байта на линии DDC_CLK генерируется девять импульсов: 8 – для передачи битов байта и 1 – бит подтверждения – ACK (квитирующий бит). Тактовые сигналы формируются устройством, запрашивающим информацию (ведущим устройством), т.е. видеокартой ПК. Частота импульсов DDC_CLK может быть любой – ограничен только ее верхний предел величиной 100 кГц. Однако последние версии стандарт DDC уже позволяют передавать данные с частотой до 400 кГц. Линия данных интерфейса DDC получила название DDC_DATA. На этой линии сигнал устанавливается либо в “высокий”, либо в “низкий” уровень, в зависимости от передаваемых данных, с частотой следования тактовых импульсов DDC_CLK. Считывание информации, выставленной на DDC_DATA, происходит при каждом тактовом импульсе на DDC_CLK. Уровни напряжений сигналов DDC_DATA и DDC_CLK – до 5 В, т.е. “высокому” уровню соответствует напряжение 5В, а “низкому” уровню сигналов соответствует напряжение около 0В. Началом цикла передачи байта данных на интерфейсе DDC является условие Start – сигнал DDC_DATA переводится из высокого уровня в низкий при высоком уровне сигнала DDC_CLK. Завершается цикл передачи байта переводом сигнала DDC_DATA из низкого уровня в высокий при высоком уровне сигнала DDC_CLK – это условие Stop. При передаче данных состояние сигнала DDC_DATA может изменяться только при низком уровне сигнала DDC_CLK. Биты данных стробируются фронтом импульсов DDC_CLK. После передачи 8 битов передающее устройство (монитор) на один такт освобождает линию данных для получения подтверждения о приеме байта принимающим устройством (компьютером). Принимающее устройство во время этого девятого такта формирует бит ACK, устанавливая сигнал на DDC_DATA в низкий уровень. При запросе от ПК, монитор передает 128 байтов данных, которые содержат следующую информацию: - фирма-производитель монитора; - модель монитора; - дата изготовления; - серийный номер; - система команд управления; - размеры экрана; - тип монитора; - параметры входных сигналов; - поддерживаемые режимы энергосбережения стандарта DPMS; - дисплейная гамма; - цветовые характеристики люминофоров; -поддерживаемые стандартные режимы работы; - параметры нестандартных поддерживаемых режимов. Для размещения и хранения всей этой информации в мониторе предусмотрено применение микросхемы памяти – ПЗУ, точнее сказать, микросхемы электрически перепрограммируемого ПЗУ (EEPROM, E2PROM, FLASH). В качестве таких микросхем обычно используются микросхемы семейства 2421 и 240х (2401, 2402 и т.д.), реже применяются микросхемы семейства 93Cx6 (93С06, 93С46, 93С66 и т.д.). Несмотря на значительный объем полученной информации о характеристиках и параметрах монитора, операционные системы семейства Windows пользователю сообщают лишь наименование фирмы производителя монитора и его модель. Более подробную информацию о мониторе можно получить только с помощью специализированных утилит или программ, которые часто поставляются вместе с мониторами на дискетах или CD-ROM. Ассоциацией VESA было предложено несколько вариантов стандарта DDC: DDC1, DDC2B, DDC2A/B. Эти стандарты в дальнейшем дорабатывались и совершенствовались, и на сегодняшнее время существуют несколько версий (ревизий) каждого из стандартов.

Графическое ядро в микроархитектуре Haswell.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Графическое ядро в микроархитектуре Haswell. Одно из основных нововведений в микроархитектуре Haswell — это новое графическое ядро c поддержкой DirectX 11.1, OpenCL 1.2 и OpenGL 4.0. Но самое главное, что графическое ядро в микроархитектуре Haswell масштабируемое. Существуют варианты графического ядра с кодовыми названиями GT3, GT2 и GT1. Ядро GT1 будет иметь минимальную производительность, а GT3 — максимальную. В графическом ядре GT3 появится второй вычислительный блок, за счет чего удвоится количество блоков растеризации, пиксельных конвейеров, вычислительных ядер и сэмплеров. Ожидается, что GT3 будет вдвое производительнее GT2. Ядро GT3 содержит 40 исполнительных блоков, 160 вычислительных ядер и четыре текстурных блока. Для сравнения напомним, что в графическом ядре Intel HD Graphics 4000 процессоров Ivy Bridge содержится 16 исполнительных устройств, 64 вычислительных ядра и два текстурных блока. Поэтому, несмотря на приблизительно одинаковые тактовые частоты их работы, графическое ядро Intel GT3 превосходит своего предшественника по уровню производительности. Кроме того, ядро GT3 имеет более высокую производительность благодаря интеграции памяти EDRAM (в ядре GT3e) в упаковку процессора. Ядро GT2 содержит 20 исполнительных блоков, 80 вычислительных ядер и два текстурных модуля, а ядро GT1 — только 10 исполнительных блоков, 40 вычислительных ядер и один текстурный модуль. Сами исполнительные блоки имеют по четыре вычислительных ядра наподобие тех, что используются в архитектуре AMD VLIW4.

Новое графическое ядро Iris Pro Graphics 580 (GT4e).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Новое графическое ядро Iris Pro Graphics 580 (GT4e). Iris Pro Graphics 580 – GT4e: 72 исполнительных устройства, 128 Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц. Новое графическое ядро Iris Pro Graphics 580 (GT4e) — имеет 72 потоковых процессора. Вычислительная производительность Iris Pro Graphics 580 составляет более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9. Современные графические ядра, применяемые в процессорах Broadwell и Skylake и относящиеся к классам Iris и Iris Pro предлагают вполне достаточную для массовых игровых систем производительность. Конечно, здесь имеется в первую очередь способность интелловской интегрированной графики нормально работать в казуальных и несложных в графическом плане сетевых играх. За последние пять лет производительность интегрированной графики выросла в 30 раз. Современные интелловские графические ядра способны предложить весьма впечатляющую теоретическую производительность. В таблице 1 приведена теоретическая мощность распространённых графических решений в сравнении с графикой процессоров Skylake в старших версиях GT4 и GT3.

Технология LCD.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Технология LCD. Технология LCD использует особые свойства группы прозрачных химических соединений со скрученными молекулами, которые называют жидкими кристаллами. Скрученные молекулы меняют поляризацию света, проходящего сквозь них. В ЖК-индикаторе поляризационный светофильтр создает две раздельные световые волны. Поляризационный светофильтр пропускает только ту световую волну, у которой плоскость поляризации параллельна его оси. Располагая в ЖК-индикаторе второй светофильтр так, чтобы его ось была перпендикулярна оси первого, можно полностью предотвратить прохождение света (экран будет темным). Вращая ось поляризации второго фильтра, т.е. изменяя угол между осями светофильтров, можно изменить количество пропускаемой световой энергии, а значит, и яркость экрана. Эти свойства и используются при разработке дисплеев, в которых кристаллы управляют количеством света, проходящего через них. Свет генерируется источником подсветки и проходит через поляризационный фильтр. Если такой кристалл не находится под действием электрического поля, то после прохождения света его поляризация меняется (на 90 градусов в дисплеях Twisted Nematic - т. е. TN, а в системах Scan Twisted Nematic или STN на 180-270°, за счет чего у последних несколько выше яркость и контрастность изображения). Так как поляризаторы, расположенные на входе и выходе (того же TN), смещены друг относительно друга также на 90 градусов, то свет может беспрепятственно проходить через жидкокристаллическую среду. Если же к прозрачным электродам приложено напряжение, спираль молекул распрямляется (они ориентируются вдоль поля). Поворота плоскости поляризации уже не происходит, и, как следствие, выходной поляризатор не пропускает свет. Таким образом получают темный сегмент на светлом фоне, и наоборот в монохромных дисплеях. Если несколько изменить конструкцию элемента (используя зеркало на выходе второго поляризатора), то темный или светлый сегмент можно увидеть и в отраженном свете. Примером в данном случае может служить индикатор наручных часов. Управление яркостью. В ЖК-экранах как с активной, так и с пассивной матрицами, второй поляризационный светофильтр управляет количеством света, проходящим через ячейку.

Формирование изображения в текстовом режиме.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Формирование изображения в текстовом режиме. Самый «скромный» знакогенератор имеет формат знакоместа 8x8 точек, причем для алфавитно-цифровых символов туда же входят и межсимвольные зазоры, необходимые для читаемости текста. Лучшую читаемость имеют матрицы 9x14 и 9x16 символов (знакогенератор на микросхеме ПЗУ, может использовать несколько выбираемых банков памяти знакогенератора, а на микросхеме ОЗУ, естественно, обеспечивается и режим, в котором его содержимое можно программно загрузить). Каждому знакоместу в видеопамяти, кроме кода символа, соответствует еще и поле атрибутов, обычно имеющее размер 1 байт. Этого вполне достаточно, чтобы задать цвет и интенсивность символа и его фона. Для монохромных мониторов, допускающих всего три градации яркости, атрибуты можно трактовать иначе, формируя такие эффекты, как подчеркивание, инверсия, повышенная интенсивность и мигание символов в разных сочетаниях. Текстовый адаптер также имеет аппаратные средства управления курсором. Знакоместо, на которое указывают регистры координат курсора, оформляется особым образом.

Реализация цветных фильтров для ЖК-дисплеев.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Реализация цветных фильтров для ЖК-дисплеев. Цветные фильтры размещаются на верхней (ближней к глазу наблюдателя) подложке на внутренней стороне. В качестве материалов для цветных фильтров используются пленки различных материалов красителей. Нанесение пленок может происходить по различным технологиям: осаждением из растворов, осаждением из газовой среды, печатным методом. Осаждение пленок цветов проводится последовательно для получения каждого фильтра цвета (красного, зеленого и голубого). После нанесения каждого слоя пленки проводится операция фотолитографии. При использовании печатного метода фотолитография не требуется. Накатка цветных, фильтров проводится через трафареты. Варианты топологии цветных фильтров приведены на рис. 1. Лучшими показателями по равномерности передачи цветов обладает топология DELTA.

Источники питания узла задней подсветки панелей LCD.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Источники питания узла задней подсветки панелей LCD. Для того чтобы улучшить видимость информации на панели LCD при низких уровнях внешней освещенности, используется дополнительный источник света. Искусственное освещение, которое называется задней засветкой, требует отдельного источника питания. Практически все основные схемы узла задней засветки требуют для питания источника света достаточно высокого напряжения, но в то же время потребляют мало тока. Задняя засветка — это процесс добавления известного источника света к LCD, чтобы улучшить видимость дисплея при низких уровнях внешней освещенности. Имеются три принципиальных подхода к организации задней засветки: электролюминесцентные панели (EL), флуоресцентные лампы с холодным катодом (CCFT) и светодиоды (LED).

Кодек (coder/decoder) - устройство или программа, способная выполнять преобразование данных или сигнала.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Кодек (coder/decoder) - устройство или программа, способная выполнять преобразование данных или сигнала. Ко?дек (англ. codec, от coder/decoder — шифратор/дешифратор — кодировщик/декодировщик или compressor/decompressor) — устройство или программа, способная выполнять преобразование данных или сигнала. Для хранения, передачи или шифрования потока данных или сигнала его кодируют с помощью кодека, а для просмотра или изменения — декодируют. Кодеки часто используются при цифровой обработке видео и звука. Аудиокодек AC'97 это стереоаудиокодек, совместимый с AC'97 2.2, предназначенный для компьютерных мультимедийных систем, включая стандарты на основе хост/софт аудио и AMR/CNR. Аудиокодек AC'97 — это комплексное дополнение к вашей аудиосистеме. Он включает в себя запатентованную технологию конвертирования для достижения отношения "сигнал/помеха" больше 90 дБ. Он также поддерживает расширения, использующие несколько кодеков с переменной частотой дискретизации и встроенными 3D-эффектами. Для аудиокодека AC'97 предусмотрены две пары стереовыходов с независимыми регуляторами уровня громкости, моновыход, множественные стерео- и моновыходы, а также функции микширования, усиления и отключения звука, что обеспечивает комплексное решение для объединенных аудиосистем. Кодек можно использовать как для ПК, так и для нетбуков. Аудиокодек AC'97 также поддерживает формат разъёмов SPDIF, что позволяет с легкостью подключать к ПК потребительскую электронику. Кодек объединен в один пакет с драйверами Windows и различными звуковыми эффектами (в том числе функцией караоке, эмуляцией 26 звуковых полотен и 5-полосным эквалайзером), делая завершенной звуковую систему любого ПК. Благодаря введению технологии HD Audio южный мост в составе набора микросхем воспроизводит высококачественный звук. При этом отпадает необходимость распаивать отдельный звуковой контроллер, что удешевляет материнскую плату. Теперь для вывода качественного звука южному мосту требуется на плате только внешний кодек (кодер/декодер). Это микросхема, которая выполняет все необходимые цифро-аналоговые и аналогово-цифровые преобразования. Данный тип микросхем имеют стоимость гораздо меньше, чем полноценный звуковой контроллер. Примером такого кодера – декодера, совместимого с Intel HD Audio является чип C-Media 9880. High Definition Audio обеспечивает 7.1 канальный звук с частотой дискретизации 192 кГц и разрешением до 32 бит. Другие подобные решения, встроенные в чипсет, поддерживают максимальную частоту дискретизации 48 кГц и 20-бит. разрешение, даже при работе в конфигурации 5.1 (6-ти канальный “звук вокруг”).

OLED дисплей. Управление OLED c пассивной адресацией.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

OLED дисплей. Управление OLED c пассивной адресацией. OLED дисплей имеет матричную структуру с n-строками и m-столбцами. В схеме с пассивной адресацией в узлах пересечений между строками располагается светодиод, работающий как пиксель (рис. 1). Цветное изображение представляет собой интегральную матрицу n?m (rij), представленную RGB-элементами. В отличие от ЖК-дисплеев, управление пикселями в OLED-дисплеях осуществляется токовыми сигналами. Яркость свечения органического светодиода, как и любого другого светодиода, пропорциональна протекающему току (рис. 2). Эта зависимость нелинейная. Следует напомнить, что у органического светодиода есть пороговое напряжение, ниже которого свечение не начинается. Величина порогового напряжения зависит от типа органического материала. В цветных OLED для каждого цветного светодиода существует свое пороговое напряжение и своя функциональная нелинейная зависимость яркости от тока (рис. 3).

BIOS (Basic Input/Output System) видеоадаптера.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

BIOS (Basic Input/Output System) видеоадаптера. BIOS (Basic Input/Output System) видеоадаптера располагается в видео-ПЗУ (Video ROM), кроме него там находятся экранные шрифты, служебные таблицы и т.п. BIOS не используется видеоконтроллером напрямую. К BIOS обращается только центральный процессор, и в результате выполнения им программ BIOS, происходят обращения к видеоконтроллеру и видеопамяти. На многих современных видеоадаптерах устанавливаются перепрограммируемые по¬средством электричества видео-ПЗУ (EEPROM, Flash ROM), допускающие обновление BIOS видеоадаптера пользователем с помощью специальной программы из комплекта видеоадаптера. Дисплейный адаптер, как обязательный компонент персонального компьютера, имеет поддержку основных функций в BIOS. Эти функции выполняются через вызов программного прерывания INT 10h - видеосервиса BIOS. Видеосервис позволяет установить видеорежим (BIOS Video Mode), определяющий формат экрана. Первоначально для задания номера режима отводился один байт, и режим устанавливался параметром функции “0h” INT 10h (АН=0, AL=Mode). Режимы 0-13h являются стандартными для адаптеров MDA, CGA, EGA, VGA. Режимы 14h-7Fh используются с нестандартными VGA- или SVGA-расширениями BIOS, они специфичны для конкретных моделей графических адаптеров. Позже появилось стандартизованное расширение функций видеосервиса VBE (VESA BIOS Extensions) для адаптеров VGA, SVGA и были определены новые видеорежимы с двухбайтными номерами старше 100h. Эти режимы устанавливаются параметром функции “4F02h” INT 10h (AX=4F02h, BX=VMode). В пределах возможностей установленного видеорежима видеосервис предоставляет возможности отображения информации на различных уровнях качества. Простейший для программиста телетайпный режим позволяет посылать поток символов, которые будут построчно отображаться на экране с отработкой символов возврата каретки, перевода строки, обеспечивая «прокрутку» изображения при заполнении экрана. Есть функции и для полноэкранной работы с текстом, при которой доступны и атрибуты символа. В графическом режиме имеется возможность чтения и записи пиксела с указанными координатами. Однако видеосервисом INT 10h программисты пользуются далеко не всегда, поскольку работает он довольно медленно. Существенно ускорить работу видеосервиса позволяет затенение области ROM BIOS, хранящей программный код драйверов (Video BIOS Shadowing). Однако самым быстрым способом построения видеоизображений, будет прямая работа с видеопамятью или непосредственное общение с акселератором графического контроллера.

Стр. 25 из 27      1<< 22 23 24 25 26 27>> 27

Лицензия