Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


OLED- дисплеи c активной матрицей (AMOLED).

OLED- дисплеи c активной матрицей (AMOLED).

Существуют два вида OLED-дисплеев - PMOLED и AMOLED. Разница заключается в способе управления матрицей - это может быть либо пассивная матрица (PM) или активная матрица (AM).

В PMOLED-дисплеях используются контроллеры развертки изображения на строки и столбцы. Чтобы зажечь пиксель, необходимо включить соответствующую строку и столбец: на пересечении строки и столбца пиксель будет излучать свет. За один такт можно заставить светиться только один пиксель. Поэтому чтобы заставить светиться весь дисплей, необходимо очень быстро подать сигналы на все пиксели путем перебора всех строк и столбцов (как это делалось в старых ЭЛТ-мониторах на электроно-лучевых трубках). Дисплеи на базе PMOLED получаются дешевыми, но из-за необходимости строчной развертки изображения не возможно получить дисплеи больших размеров с приемлемым качеством изображения.

AMOLED (Active-Matrix Organic Light-Emitting Diode – активная матрица органических светоизлучающих диодов). В AMOLED-дисплеях – смесь технологий OLED и TFT. В AMOLED экранах органическими светоизлучающими диодами (OLED) управляют активные матрицы из тонкоплёночных TFT-транзисторов (время задержки матрицы 30 мс). Экран очень тонкий и гибкий, малое энергопотребление, способность отображать большую цветовую гамму и более качественно, нет бликов на солнце. Активная адресация AMOLED-дисплеев позволяет значительно улучшить оптические характеристики дисплеев и увеличить размер экранов.

Одним из важных элементов схемы управления матрицей AMOLED являются ключевые элементы, коммутирующие ток через OLED-светодиод. Они должны обеспечивать достаточное быстродействие, пропускать большие токи (несколько мА), иметь малые токи уточки, а технология их формирования должна обеспечивать высокую однородность параметров по всей площади экрана (см. рис. 1).

 

Рис. 1. Типовая схема ячейки адресации AMOLED

 

Технология их формирования должна быть простой, недорогой и обеспечивать стабильную воспроизводимость параметров транзисторов. В настоящее время используются транзисторные ключи на аморфном кремнии a-Si и на поликремнии p-Si. Поликремниевый слой получают методом лазерного отжига пленки аморфного кремния. Пока этот процесс довольно сложен, трудоемок и недешев. Технология формирования матрицы транзисторов на аморфном кремнии в настоящее время хорошо отлажена и обеспечивает стабильные и однородные по площади параметры транзисторов. Поликремний обеспечивает лучшие токовые передаточные характеристики, чем аморфный кремний, однако в процессе производства очень трудно обеспечить высокую однородность характеристик, что приводит к заметной разнояркостности элементов и зон экрана. Для решения этой проблемы были опробованы различные альтернативные решения. В качестве одного из вариантов реализации ключевых токовых элементов были предложены даже MEMS-ключи. Для хорошо отлаженного в настоящее время формирования MEMS-компонентов используются те же технологические процессы, что и для обычных микросхем. Главное преимущество предложенной концепции управления — высокая однородность и стабильность параметров MEMS-ключей. Они имеют малое сопротивление во включенном состоянии и могут коммутировать большие токи. Разброс сопротивлений пренебрежительно мал. Время переключения ключей вполне достаточное для обеспечения коммутации в заданном временном интервале (см. рис. 2).

 

Рис. 2. Принцип работы MEMS-ключа

 

На рис. 3 схематично изображены фазы управления OLED-пикселом на основе MEMS-ключа. Рассмотрим их подробнее.
T1— фаза записи данных в элемент памяти (конденсатор) в процессе выборки строки. Ключ SW1 открыт, MEMS-ключ SW2 разомкнут.
Т2— фаза хранения данных и управление током OLED-светодиода. Ключ SW1 закрыт, SW2— замкнут.
T3— фаза разряда. Конденсатор разряжается и размыкает ключ SW2.
Т4— фаза сохранения выключенного состояния. Прохождение тока через светодиод блокируется. Ключ SW1 закрыт и SW2 разомкнут.

 

Рис. 3. Фазы управления OLED-пикселом на основе MEMS-ключа (режим ШИМ-модуляции)

 

Для управления яркостью используется метод ШИМ. Сопротивление замкнутого MEMS-ключа около 20Ом. Ключ способен пропускать токи до 15 мА. Время переключения ключа около 5 мкс. Потребление тока происходит только в режиме переключения, и оно незначительно по сравнению с остальной схемой управления и матрицей OLED. У этой технологии только один недостаток — для электростатического управления MEMS-ключом требуются высокие уровни напряжений 30…50 В, однако в серийно производимых MEMS-приборах также используется электростатическое управление с амплитудами сигналов в диапазоне 30…70 В (пока эта технология по стоимости реализации еще недозрела для использования в серийном производстве).

Дисплейные технологии продолжают развиваться и совершенствоваться. Основные векторы их развития - снижение потребления дисплеев, увеличение уровня интеграции и широкое использование гибридных технологий. Продолжается внедрение технологий объемного изображения и проекционных технологий в секторе мобильных устройств. Доминирующие позиции на рынке пока по-прежнему удерживают ЖК-дисплеи. Последние достижения демонстрируют высокий потенциал этой технологии как в секторе большеформатных дисплеев, так и в секторе мобильных устройств. Проекционные технологии на основе MEMS имеют хорошие перспективы.

За последние годы удалось достичь несомненного прогресса в области дисплейной технологии OLED. Расширяется рынок, растет объем продаж изделий с OLED-дисплеями.

В то же время широкое внедрение сверхмощных светодиодов в качестве излучателей для задней подсветки расширяет возможности ЖК-дисплеев и значительно увеличивает эффективность энергии за счет отказа от применения цветных фильтров (цветные фильтры, которые как известно, поглощали до 70% световой энергии). Именно для этого требовалось повысить быстродействие ЖК-ячеек до уровня 1–2 мс и использовать раздельную модуляцию по трем цветовым компонентам светового потока. Бурно развивающейся технологии OLED пока еще предстоит борьба со своим очень сильным конкурентом - ЖК-дисплеями.


Лицензия