Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по блокам питания

Стр. 1 из 24      1 2 3 4>> 24

Полевые транзисторы (MOSFET-транзисторы).

Статья добавлена: 18.09.2020 Категория: Статьи по блокам питания

Полевые транзисторы (MOSFET-транзисторы). В современной электронной аппаратуре, в блоках питания, мониторах, системных платах ПК и другой аппаратуре все чаще находят применение полевые транзисторы. При проведении ремонта мы сталкивается с необходимостью проверки исправности мощных полевых транзисторов. В данной статье даны рекомендации по проверке полевого транзистора и мерах предосторожности при работе с этими компонентами электронных схем. Полевые транзисторы (MOSFET-транзисторы). Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания ПК, телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры. В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы). Обозначение этого типа транзисторов показано на рис. 1 (для сокращения числа внешних компонентов в транзистор может быть встроен мощный высокочастотный демпферный диод). MOSFET - это аббревиатура от английского словосочетания Metal-Oxide-Semiconductor Field Effect Transistor (Металл-Оксидные Полупроводниковые Полевые Транзисторы). Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной мощности (сотни ватт). В открытом состоянии ПТ имеют чрезвычайно малые значения сопротивления (десятые доли Ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла.

Профессиональная замена блока питания.

Статья добавлена: 16.09.2020 Категория: Статьи по блокам питания

Профессиональная замена блока питания. При покупке нового компьютера или замене блока питания необходимо обратить внимание на ряд параметров источника питания. Качество блоков питания определяется не только выходной мощностью. Опыт показывает, что, если в одной комнате стоит несколько компьютеров и качество электрической сети невысокое (часто пропадает напряжение, возникают помехи и т.п.), системы с мощными блоками питания работают гораздо лучше систем с дешевыми блоками, устанавливаемыми в некоторых моделях невысокого класса. Нужно обязательно выяснить, гарантирует ли производитель исправность блока питания (и подключенных к нему систем) при следующих обстоятельствах: - полном отключении сети на любое время; - любом понижении сетевого напряжения; - кратковременных выбросах с амплитудой до 2 500 В (!) на входе блока питания (например, при разряде молнии). Хорошие блоки питания отличаются высоким качеством изоляции: ток утечки не более 500 мкА, что бывает важно в том случае, если сетевая розетка плохо заземлена или вовсе не заземлена. Требования, предъявляемые к высококачественным устройствам, очень жесткие и разумеется, желательно, чтобы ваш блок питания им соответствовал. Для оценки качества блока питания используются различные критерии. Многие потребители при покупке компьютера пренебрегают значением источника питания, и поэтому некоторые сборщики компьютеров сокращают расходы на него. Ведь не секрет, что гораздо чаще цена компьютера увеличивается за счет дополнительной памяти или жесткого диска большей емкости, а не более совершенного источника питания. При покупке необходимо обратить внимание на ряд основных параметров источника питания:

Однотактные преобразователи напряжения.

Статья добавлена: 11.09.2020 Категория: Статьи по блокам питания

Однотактные преобразователи напряжения. Источник питания - это основа основ практически любого электронного устройства. От его работоспособности и правильности функционирования зависит и работа самого устройства. В данной статье рассмотрены еще популярные на сегодняшний день источники питания - импульсные однотактные. То, что однотактные источники питания являются часто применяемыми на современном этапе развития электроники - это реальность. Область применения этих устройств необычайно широка: мониторы, телевизоры, принтеры лазерные, струйные и матричные, копировальные аппараты, видеомагнитофоны и факсы и т.д., и т. п. Достаточно часто однотактные источники используются в качестве источников питания для системных блоков ПК, потеснив в этом сегменте двухтактные источники. Рассмотрим работу обобщенной схемы однотактного импульсного блока питания, приведенной на рис.1. Переменное напряжение сети выпрямляется диодным мостом и сглаживается конденсатором большой емкости, являющимся фильтром выпрямленного напряжения. В результате на выходе выпрямителя формируется постоянное напряжение номиналом около +300 В. Это напряжение подается на схему пуска, которая вырабатывает питающее напряжение для схемы управления сразу же после включения блока питания. На выходе схемы управления вырабатывается управляющее напряжение в виде последовательности прямоугольных импульсов с частотой несколько десятков кГц. Эти импульсы управляют состоянием мощного высокочастотного ключевого транзистора, то есть открывают и закрывают его. Нагрузкой этого транзистора является первичная обмотка импульсного высокочастотного трансформатора. В результате переключения транзисторного ключа, в первичной и во всех вторичных обмотках трансформатора наводятся импульсные ЭДС прямоугольной формы, которые затем выпрямляются и сглаживаются однополупериодными выпрямителями (вторичные выпрямители). Когда силовой транзистор открыт, выходное напряжение сетевого выпрямителя прикладывается к первичной обмотке трансформатора и через нее протекает ток, нарастающий по экспоненциальному закону (причем на начальном этапе экспоненты нарастание тока идет практически по линейному закону). В это время в трансформаторе происходит накопление магнитной энергии. Когда же транзистор закрыт, ток через первичную обмотку не протекает, а течет во вторичной обмотке, т.е. накопленная магнитная энергия передается в нагрузку.

Микросхема FSP3528 (ШИМ-контроллер).

Статья добавлена: 10.09.2020 Категория: Статьи по блокам питания

Микросхема FSP3528 (ШИМ-контроллер). С микросхемой FSP3528 приходилось встречаться в следующих моделях системных блоков питания: - FSP ATX-300GTF; - FSP A300F-C; -FSPATX-350PNR; - FSP ATX-300PNR; - FSP ATX-400PNR; - FSP ATX-450PNR; - ComponentPro ATX-300GU. Но так как выпуск микросхем имеет смысл только при массовых количествах, то нужно быть готовым к тому, что она может встретиться и в других моделях блоков питания фирмы FSP. Прямых аналогов этой микросхемы пока не приходилось встречать, поэтому в случае ее отказа, замену необходимо осуществлять на точно такую же микросхему. Однако в розничной торговой сети приобрести FSP3528 не представляется возможным, поэтому найти ее можно лишь в системных блоках питания FSP, отбракованных по каким-либо другим соображениям. Микросхема FSP3528 выпускается в 20-контактном DIP-корпусе (рис 1). Назначение контактов микросхемы описывается в таблице 1, а на рис.2 приводится ее функциональная схема. В таблице 1 для каждого вывода микросхемы указано напряжение, которое должно быть на контакте при типовом включении микросхемы. А типовым применением микросхемы FSP3528 является использование ее в составе субмодуля управления блоком питания персонального компьютера. Микросхема FSP3528 является ШИМ-контроллером, разработанным специально для управления двухтактным импульсным преобразователем системного блока питания персонального компьютера.

Аккумуляторы ноутбуков (основные параметры).

Статья добавлена: 09.09.2020 Категория: Статьи по блокам питания

Аккумуляторы ноутбуков (основные параметры). При покупке аккумулятора потребитель должен знать на какие параметры батареи ему нужно обратить внимание. К основным параметрам аккумулятора, по которым можно оценить его возможности и качество относятся: номинальная емкость (та, которая должна быть), реальная емкость и внутреннее сопротивление, отдаваемая емкость, коэффициент отдачи, коэффициент полезного действия аккумулятора, срок службы. Номинальная емкость аккумулятора - это количество электрической энергии, которой аккумулятор теоретически должен обладать в заряженном состоянии. Количество энергии определяется при разряде аккумулятора постоянным током в течение измеряемого промежутка времени до момента достижения заданного порогового напряжения. Измеряется в ампер-часах (А*час) или миллиампер-часах (mA*час). Ее значение указывается на этикетке аккумулятора или зашифровано в обозначении его типа. Практически эта величина колеблется от 80 до 110% от номинального значения и зависит от большого числа факторов: от фирмы-изготовителя, условий и срока хранения, от технологии ввода в эксплуатацию, технологии обслуживания в процессе эксплуатации, используемых зарядных устройств, условий и срока эксплуатации и т.д. Теоретически аккумулятор номинальной емкостью 600 мА*час может отдавать ток 600 mA в течение одного часа, 60 мА в течение 10 часов, или 6 mA в течение 100 часов. Практически же, при высоких значениях тока разряда номинальная емкость никогда не достигается, а при низких токах превышается. Номинальное значение емкости аккумулятора часто обозначается буквой “C”, поэтому здесь часто встречаются обозначения типа: С, 1/10C или C/10. Когда говорят о разряде аккумулятора, равном 1/10C, это означает разряд током, величина которого равна десятой части от величины номинальной емкости аккумулятора. Так например, для аккумулятора емкостью 600 мА*час это будет разряд током 600/10 = 60 mA. Подобно вышесказанному о разряде аккумуляторов, при заряде значение 1/10C означает заряд током, равным десятой части заявленной емкости аккумулятора. Реальная емкость нового аккумулятора, как правило, составляет от 110 до 80 % от значения номинальной емкости. Нижний предел в 80 % обычно рассматривается в качестве минимально допустимого значения для нового аккумулятора.

Проверка МОП - транзисторов.

Статья добавлена: 25.08.2020 Категория: Статьи по блокам питания

Проверка МОП - транзисторов. Как можно убедиться в работоспособности МОП — транзисторов? Так как полевые транзисторы активно используются в различных схемах, то любому ремонтнику часто приходится решать задачу диагностики этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными транзисторами импульсных блоков питания и аналогичных им схем. Как и любой транзистор, полевой имеет три вывода затвор (G), сток (D), исток (S). Расположение этих контактов меняется, в зависимости от мощности транзистора, его характеристик, производителя. Полевые транзисторы первых поколений были очень сильно подвержены воздействию статического электрополя и очень часто при неосторожной работе сами ремонтники выводили эти транзисторы из строя. Поэтому полевые транзисторы рекомендуется проверять, произведя предварительное заземление, для этого ремонтник должен надеть на руки заземляющие браслеты для снятия с себя накопленного электро-заряда, и кроме того их поставляли часто в специальных предохраняющих упаковках и обычно ножки транзисторов закорачивали. Современные мощные транзисторы, как правило, не боятся статического разряда и поэтому их продают без особых предосторожностей и без специальных упаковок и никаких дополнительных мер (например, заземляющие браслеты) можно не применять. Общее правило проверки гласит: "При исправном мощном МОП - транзисторе между всеми его контактами должно быть бесконечное сопротивление". Причем бесконечное сопротивление должно быть, независимо от полярности прикладываемого тестового напряжения. Однако, как и у всех правил, здесь имеются небольшие исключения:

ШИМ контроллер - микросхема КА3511.

Статья добавлена: 19.08.2020 Категория: Статьи по блокам питания

ШИМ контроллер - микросхема КА3511. Микросхема KA3511 - это улучшенный ШИМ контроллер со встроенными вспомогательными схемами предназначенный для применения в блоках питания персональных компьютеров стандарта ATX. Производится компанией FAIRCHILD, другая маркировка AN4003. Микросхема содержит ряд схем которые позволяют быстро и точно стабилизировать выходные напряжения, а также выполнять функции защиты. Реализованы защита от перенапряжения на выходе блока питания и защита от понижения напряжения. Присутствует источник опорного напряжения, секция для удаленного управления микросхемой и т. д. Назначение выводов микросхемы представлено в таблице 1. Описание: • Полный PWM контроль и защита цепей • Минимум внешних элементов • Точность установки напряжения 2% • Работа в двухтактном режиме • Выходной втекающий ток каждого выхода …..200мА • Регулируемая величина мёртвого времени • Возможность мягкого запуска • Встроенная схема подавления сдвоенных импульсов • Встроенная защита превышения напряжений 3.3V / 5V / 12V • Встроенная защита понижения напряжений 3.3V / 5V / 12V • Дополнительный переменный канал защиты (PT), настраивается разработчиком. • Внешнее включение/выключение (PS-ON) • Просто организуемая синхронизация • Генератор сигнала Power good • 22-контактный двухрядный корпус (DIP).

Меры предосторожности при модернизации компьютера.

Статья добавлена: 17.08.2020 Категория: Статьи по блокам питания

Меры предосторожности при модернизации компьютера. При модернизации компьютера, нужно обязательно подсчитать, потребляемую его отдельными узлами мощность, а затем определить и требуемую мощность блока питания (только после этого будет ясно, нужно ли заменять блок питания на более мощный). Довольно сложно определить этот параметр, например, для устройств с напряжением питания +5 В, включая системную плату и платы адаптеров. Мощность, потребляемая системной платой, зависит от нескольких факторов и будет лучше, если вы как можно точнее вычислите значение тока для вашей конкретной платы. Если не удается найти точные данные для плат расширения, то нужно проявить разумный консерватизм и исходить из максимально возможной мощности потребления для плат адаптеров, допускаемой стандартом используемой шины. Обычно превышение допустимой мощности происходит при заполнении разъемов и установке дополнительных дисководов. Некоторые жесткие диски, CD-ROM, накопители на гибких дисках и другие устройства могут перегрузить блок питания компьютера. Необходимо обязательно проверить, достаточно ли мощности источника +12 В для питания всех дисководов. Особенно это относится к компьютерам с корпусом Tower, в котором предусмотрено много отсеков для накопителей. Проверьте также, не окажется ли перегруженным источник +5 В при установке всех адаптеров, особенно при использовании плат для шин PCI. С одной стороны, лучше перестраховаться, а с другой - имейте в виду, что большинство плат потребляет меньшую мощность, чем максимально допустимая стандартом шины. Часто блоки питания продолжают работать, но периодически отключаясь или подавая на свои разъемы нештатные значения напряжений. Компьютер при этом работает, но его поведение абсолютно непредсказуемо, а действительным виновником является перегруженный блок питания.

Проблемы электропитания компьютерных систем и их решение.

Статья добавлена: 12.08.2020 Категория: Статьи по блокам питания

Проблемы электропитания компьютерных систем и их решение. Проблемы электропитания импортного оборудования компьютерных систем ощущается особенно остро так как обеспечение нормальным питанием рассматривается, естественно, с позиций того окружения, в котором работает пользователь зарубежный. Но в российских электросетях более высокое напряжение питания 220 В (колеблется в пределах 210 - 230 В), иная частота сети - 50 Гц против 60 Гц. Такое отличие частот может вызвать повышенную нагрузку на трансформаторы блоков питания. Большой проблемой является для нас небрежный, а часто и неквалифицированный монтаж сети. Только сравнительно недавно электропроводку стали выполнять трехжильным проводом, в котором кроме «нейтрали» и «фазы» присутствует еще и «земля» (куда эта земля будет подключена это отдельный вопрос). Доступность трехфазных электропроводок облегчает решение вопроса предельно допустимой нагрузки на сеть, но порождает ряд других проблем иного рода. Случается, что из-за низкой квалификации, самоуверенности и торопливости при монтаже, разные розетки в одной комнате подключаются к разным фазам, напряжение между которыми составляет 380 В. При небрежном заземлении, которое осуществляется порой в разных точках, могут возникнуть опасные ситуации, поэтому в наших условиях проблему энергоснабжения обычно приходится начинать не с выбора источника бесперебойного питания (ИБП), а с перепланировки силовой электросети. К серьезнейшим недостаткам нашей электросети следует отнести даже не сбои в питании, а импульсы и перенапряжение. Даже для современных устройств с автоматической настройкой на напряжение сети значительно повышенное питание может привести к выходу их из строя. В этой связи при выборе устройства ИБП необходимо поинтересоваться и тем, как оно справляется с повышенным напряжением и с высоковольтными импульсами. Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению. Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения. Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд. Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания. Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные. Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления.

Ремонтируем блок питания. Стандартная последовательность действий.

Статья добавлена: 13.07.2020 Категория: Статьи по блокам питания

Ремонтируем блок питания. Стандартная последовательность действий. Всегда любой ремонт начинается с очень внимательного предварительного внешнего осмотра ремонтируемого объекта. При осмотре необходимо обращать внимание на исправность предохранителей и на любое изменение внешнего вида элементов электрической схемы (цвета корпуса элемента, вздутость корпуса, обрывы соединений и др.). При определении неисправного элемента следует обратить внимание на исправность всех элементов, подключенных именно к этой цепи. Ремонт следует проводить технически исправными приборами, с использованием низковольтных паяльников, питающихся через разделительный трансформатор. Нежелательно производить ремонт без развязывающего трансформатора и нагрузки. Для блока питания мощностью 200 Вт рекомендуется использовать для источника питания +5В нагрузку сопротивлением 4,8 Ом (50 Вт), а для источника +12В нагрузку 14 Ом (12 Вт), в качестве достаточной нагрузки источника питания по каналу +12В могут быть использованы автомобильные лампочки на 12В. Стандартная последовательность действий: 1)В выключенном состоянии источник внимательно осмотреть (особое внимание обратить на состояние всех электролитических конденсаторов - они не должны быть вздуты). 2)Проверить исправность предохранителя и элементов входного фильтра БП. 3)Прозвонить на короткое замыкание или обрыв диоды выпрямительного моста (эту операцию, как и многие другие, можно выполнить, не выпаивая диоды из платы). При этом в остальных случаях надо быть уверенным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором (в подозрительных случаях, элемент схемы необходимо выпаивать и проверять отдельно). 4)Проверить исправность выходных цепей: электролитических конденсаторов низкочастотных фильтров, выпрямительных диодов и диодных сборок. 5)Проверить силовые транзисторы высокочастотного преобразователя и транзисторов каскада управления. Обязательно проверить возвратные диоды, включенные параллельно электродам коллектор-эмиттер силовых транзисторов. Эти действия, дают положительный результат в обнаружении только следствия неработоспособности всего блока, но причина неисправности в большинстве случаев находится гораздо глубже. Например, неисправность силовых транзисторов может быть следствием: неисправности цепей схемы защиты и контроля, нарушения цепи обратной связи, неисправности ШИМ-преобразователя, выхода из строя демпфирующих RC-цепочек или, межвитковый пробой в силовом трансформаторе. Поэтому если удается найти неисправный элемент, то желательно пройти все этапы проверок, перечисленные выше (т. к. предохранитель сам по себе никогда не сгорает, а пробитый диод в выходном выпрямителе станет причиной «смерти» ещё и силовых транзисторов высокочастотного преобразователя.

Правила оптимального использования энергии аккумулятора ноутбука.

Статья добавлена: 10.07.2020 Категория: Статьи по блокам питания

Правила оптимального использования энергии аккумулятора ноутбука. Чтобы оптимально использовать энергию вашего аккумулятора, для увеличения времени автономной работы и ресурса батареи, соблюдайте следующие простые рекомендации: 1. Регулируйте яркость дисплея в зависимости от текущих условий освещения (чем меньше яркость, тем лучше с точки зрения энергопотребления). 2. Если с ноутбуком поставляются утилиты регулировки поведения CPU или других системных компонентов, то имеет смысл обратиться к их настройкам. Как правило, ручная регулировка настроек на практике сказывается мало. 3. Если производитель ноутбука не предоставляет каких-либо утилит регулировки энергопотребления, всегда используйте схему управления питанием "Portable/Laptop" ("Портативная") в пункте "Power Options/Электропитание" "Панели управления". Как правило, данная схема является оптимальным выбором, поскольку она позволяет процессору самостоятельно выбирать разумный уровень энергопотребления. Выбор другой схемы помогает лишь для некоторых приложений в особых случаях. 4. Отключайте беспроводные модули Bluetooth и WLAN, если не используете их. 5. Размещайте ноутбук так, чтобы тепло могло легко покидать корпус. Избегайте прямого солнечного света. Плохая вентиляция приводит к нагреву внутренних компонентов, в результате чего вентилятор вращается быстрее и потребляет больше энергии. Высокие температуры также приводят к преждевременному старению и потере ёмкости аккумулятора. 6. Если вы используете ноутбук, главным образом (или исключительно), для офисных приложений, установите максимальный режим энергосбережения в графическом драйвере. .....

Ремонт системы электропитания ноутбука (пример).

Статья добавлена: 24.06.2020 Категория: Статьи по блокам питания

Сегодня купить себе ноутбук считает «делом чести» почти каждый студент, мобильные компьютеры, обладая очень малым энергопотреблением и уменьшенными размерами при оптимальной стоимости, используются и для просмотра видеофильмов, фотографий, общения в Интернет, работы с электронной почтой, просмотра сайтов и в процессе обучения. Автономность ноутбуков позволяет использовать их в любых условиях, поэтому ноутбук могут нечаянно уронить (например, с колен на пол), облить сладким кофе и т. п., поэтому обращение в сервисный центр с просьбой отремонтировать ноутбук стало обычным явлением. В последнее время постоянно растет надежность компонентов и качество конструкций ноутбуков. Ноутбуки постоянно усовершенствуются, но, несмотря на это, они требуют бережного обращения, периодического квалифицированного сервисного обслуживания, периодичность которого зависит в первую очередь от интенсивности их пользования, условий работы и «человеческого фактора». Проявление неисправности. Проявление неисправности в своем ноутбуке (Samsung 355E5CHP) клиент охарактеризовал следующим образом: ноутбук не реагирует на кнопку включения питания, но аккумулятор и зарядник работоспособны (проверяли на таком же ноутбуке). Прежде всего, для уточнения состояния самого устройства решили проверить (используя имеющуюся схему ноутбука) правильность функционирования системы «дежурного» питания ноутбука, которое запитывает схемы реализующие процедуру включения питания при нажатии на кнопку включения питания (рис. 1). По таблице 1 видим, что «дежурное» питание состоит из двух групп (+3VL, +5VL, +RTCVCC и +5VALV, +3VALV, +1.1VALV.

Стр. 1 из 24      1 2 3 4>> 24

Лицензия