Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Блок питания и инвертор ламп подсветки ЖК-монитора.

Блок питания и инвертор ламп подсветки  

ЖК-монитора.

 По статистике ремонта неисправности блоков питания, особенно импульсных, занимают лидирующие позиции среди всех остальных. Практические знания по принципам построения и работы блоков питания, его элементной базы и схемотехники будут особенно полезны и востребованы в практике ремонта подавляющего большинства электронных устройств и различной радиоаппаратуры.

Блок питания ЖК-монитора состоит из двух функциональных частей (по сути это два преобразователя):
- AC/DC адаптер или по-другому сетевой импульсный блок питания;
- DC/AC инвертор, обеспечивающий питание люминесцентных ламп подсветки.

AC/DC адаптер служит для преобразования переменного напряжения сети (220 В) в постоянное напряжение небольшой величины (обычно на выходе импульсного блока питания формируются напряжения от 3,3 до 12 В). Инвертор DC/AC преобразует полученное постоянное напряжение (DC) в переменное (AC) величиной около 600 - 700 В и частотой около 50 кГц, которое подается на электроды люминесцентных ламп, встроенных в ЖК-панель.

AC/DC адаптер. Большинство импульсных блоков питания строится на базе специализированных микросхем контроллеров, например, в блоке питания ЖК монитора Acer AL1716 (рис. 1) применена микросхема TOP244Y (в документации на микросхему TOP244Y можно найти типовые примеры принципиальных схем блоков питания, что можно использовать при ремонте блоков питания ЖК мониторов, так как схемы во многом соответствуют типовым, которые указаны в описании микросхемы). На рис. 1 и рис. 2 рассмотрены два примера принципиальных схем импульсных блоков питания на базе микросхем серии TOP242 - 249.

QIP Shot - Image: 2016-08-09 13:25:36 

Рис. 1.

QIP Shot - Image: 2016-08-09 13:26:17 

Рис. 2.


В схеме на рис. 2 применены сдвоенные диоды с барьером Шоттки (MBR 20100). Приведенные принципиальные схемы являются примерами, а реальные схемы импульсных блоков питания могут несколько отличаться). Например, микросхема TOP245Y представляет собой законченный функциональный прибор, в корпусе которого имеется ШИМ-контроллер и мощный полевой транзистор, который переключается с частотой от десятков до сотен килогерц и формирует импульсы в первичной обмотке трансформатора (отсюда пошло и название блок питания - импульсный).

Процесс работы такого импульсного блока питания сводится к следующему:
1) Выпрямление переменного сетевого напряжения 220В.
Выпрямление сетевого напряжения 220В выполняет диодный мост и фильтрующий конденсатор. После выпрямления на конденсаторе формируется напряжение немного больше чем сетевое. На рис. 3 показан диодный мост, а рядом фильтрующий электролитический конденсатор (емкостью 82 мкФ 450 В).
2) Преобразование напряжения и его понижение с помощью трансформатора.

QIP Shot - Image: 2016-08-09 13:27:22 

Рис. 3.


Коммутацию постоянного напряжения 220-240 В с частотой в несколько десятков - сотен килогерц в обмотку высокочастотного импульсного трансформатора выполняет микросхема TOP245Y. Импульсный трансформатор выполняет ту же роль, что и обычный трансформатор, но работает он на более высоких частотах, во много раз больше, чем 50 Гц (поэтому для изготовления его обмоток требуется меньшее число витков, а, следовательно, и меди). В импульсном трансформаторе необходим сердечник из феррита, а не из трансформаторной стали как у трансформаторов на 50 Гц. В результате трансформатор получается очень компактным. Кроме того, импульсные блоки питания очень экономичны и у них высокий КПД.
3) Выпрямление пониженного трансформатором переменного напряжения.
Для выпрямления пониженного переменного напряжения используют мощные выпрямительные диоды, например, использованы диодные сборки с маркировкой SRF5-04. Для выпрямления токов высокой частоты используют диоды Шоттки и обычные силовые диоды с p-n переходом (обычные низкочастотные диоды для выпрямления токов высокой частоты менее предпочтительны, но часто используются для выпрямления повышенных напряжений (20 - 50 В), что нужно иметь ввиду при замене дефектных диодов. 
У диодов Шоттки тоже есть некоторые особенности, которые необходимо учитывать. Эти диоды имеют малую мкость перехода и способны быстро переключаться (переходить из открытого состояния в закрытое). Это положительное свойство и используется для работы на высоких частотах. Диоды Шоттки имеют малое падения напряжения около 0,2-0,4 В (против 0,6 - 0,7 В у обычных диодов). Это свойство повышает их КПД. Но есть у диодов Шоттки и негативные свойства, которые ограничивают их более широкое использование в электронной технике - они очень чувствительны к превышению обратного напряжения (при превышении обратного напряжения диод Шоттки необратимо выходит из строя). Обычный же диод переходит в режим обратимого пробоя и может восстановиться после превышения допустимого значения обратного напряжения. Именно это обстоятельство и является ахиллесовой пятой, которое служит причиной выгорания диодов Шоттки в выпрямительных цепях всевозможных импульсных блоков питания. Об этом надо помнить и учитывать при проведении работ по диагностики и ремонте.

Для устранения опасных для диодов Шоттки всплесков напряжения, образующихся в обмотках трансформатора на фронтах импульсов, применяются так называемые демпфирующие цепи (на схеме рис. 1 она обозначена как R15- C14).

Как правило, диоды Шоттки используются в низковольтных цепях с обратным напряжением, не выше 10 - 18 В, а если требуется получение напряжения в несколько десятков вольт (от 20 до 50В), то применяются диоды на основе p-n перехода. Диоды Шоттки чувствительны к перегреву, в связи с этим их, как правило, для отвода тепла устанавливают на алюминиевый радиатор (отличить диод на основе p-n перехода от диода Шоттки можно по условному графическому обозначению на схеме (рис. 4).

QIP Shot - Image: 2016-08-09 13:27:55 

Рис. 4.


После выпрямительных диодов всегда ставятся электролитические конденсаторы, обеспечивающие сглаживание пульсаций постоянных выходных напряжений (12 В; 5 В; 3,3 В), которые запитывают все блоки LCD-монитора.

Инвертор DC/AC.

Инвертор DC/AC. По своему назначению инвертор схож с электронными пуско-регулирующими аппаратами, применяемыми в осветительной технике для питания бытовых осветительных люминесцентных ламп, но у инверторов ЖК мониторов есть существенные отличия. Инвертор ЖК-монитора, как правило, построен на специализированной микросхеме, которая значительно расширяет набор функций и повышает над жность схемы (например, инвертор ламп подсветки ЖК-монитора Acer AL1716 построен на базе ШИМ контроллера OZ9910G, который запаян на печатной плате планарным монтажом (см. рис. 5).

QIP Shot - Image: 2016-08-09 13:28:31 

Рис. 5.

Инвертор преобразует постоянное напряжение (значение которого обычно составляет 12 В - это зависит от варианта схемотехники инвертора) в переменное 600-700 В частотой 50 кГц. Контроллер инвертора может управлять яркостью люминесцентных ламп. Сигналы изменения яркости ламп поступают от контроллера ЖКИ (специализированный микропроцессор - мониторный скалер). К микросхеме-контроллеру подключены полевые транзисторы или их сборки. 

На рис. 6 показана плата инвертора, на которой к контроллеру OZ9910G подключены две сборки комплементарных полевых транзисторов AP4501SD (сборка полевых транзисторов AP4501SD и е цоколевка показаны на рис. 7, назначение выводов мощной комплементарной пары МДП-транзисторов AO4600 в корпусе SOIC-8 см. в табл. 1). На плате установлено два высокочастотных трансформатора, служащих для повышения переменного напряжения и подачи его на электроды люминесцентных ламп. Кроме основных элементов, на плате установлены всевозможные радиоэлементы, служащие для защиты от короткого замыкания и неисправности ламп.

QIP Shot - Image: 2016-08-09 13:29:19 

Рис. 6.

QIP Shot - Image: 2016-08-09 13:29:47 

Рис. 7.

 

Таблица 1. Назначение выводов мощной комплементарной пары МДП-транзисторов

 AO4600 в корпусе SOIC-8

 QIP Shot - Image: 2016-08-09 13:30:15

 

 


Лицензия