Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Диагностирование микросхемы AT2005B.

Диагностирование микросхемы AT2005B.

 

Диагностика микросхемы AT2005B (рис. 1,2) мало чем отличается от классического варианта диагностирования любого ШИМ контроллера. В общем случае диагностирование можно разделить на несколько этапов.

На первом этапе необходимо сделать полный визуальный контроль состояния микросхемы. Особо стоит обратить внимание на корпус микросхемы, нередки случаи, когда выход из строя микросхемы сопровождается разрушением ее корпуса, изменением цвета корпуса и печатной платы в том месте, где расположена микросхема. Далее в процессе диагностики необходимо с помощью обычного тестера прозвонить все силовые выводы и управляющие выводы микросхемы на короткое замыкание, к таковым можно отнести: 
-контакты, через которые осуществляется питание микросхемы;
-контакты, по которым осуществляется контроль выходных напряжений блока питания (+3,3В, +5Ви +12В);
-контакты, на которых формируются выходные управляющие выводы для силового каскада.

Рис. 1

Наличие малых сопротивлений (единицы и десятки Ом) между названными контактами и общим контактом (GND) указывает на необходимость замены микросхемы или более детального ее диагностирования и обследования сопутствующих цепей ее обвязки. Стоит отметить, что возникновение пробоев по указанным контактам, как правило, приводит к большим токам через микросхему, что является причиной срабатывания цепей защиты в первичных силовых цепях инвертора и дополнительного дежурного источника питания, а в случае их несрабатывания к сильному разогреву, разрушению или потемнению корпуса микросхемы. 

Следующие этапы диагностики подразумевают измерение сигналов на выводах микросхемы. Для этого потребуется лабораторный источник питания, тестер, осциллограф. От внешнего источника питания на микросхему, а именно на вывод питания, необходимо подать напряжение питания +5 В. При этом в момент включения необходимо проконтролировать появление пилообразного напряжения питания на выводе подключения частотозадающего конденсатора (конт.8). Далее можно проверить исправность выходного каскада микросхемы. Для этого необходимо имитировать наличие сигнала удаленного включения PSON, соединив вывод 11 микросхемы с общим проводником (GND). Одновременно нужно проконтролировать кратковременное появление управляющих прямоугольных сигналов на выводах 9 и 10. Продолжительность появления сигналов составляет время не более одной секунды, далее импульсы исчезают по причине срабатывания блокировки от КЗ в выходных шинах (+З,ЗВ, +5В, +12В), т.к. выходных напряжений как таковых нет. 

Заключительный этап диагностики микросхемы подразумевает проверку практически всех ее функциональных блоков (рис. 2). Для этого необходимо от внешних источников питания на выходе блока питания имитировать выходные напряжения и отсутствие блокировок, естественно, саму микросхему выпаивать из схемы не надо (рис. 3). Необходимо учесть, что некоторые блоки питания в своем составе в канале формирования дежурного питания, а следовательно и питания микросхемы, содержат интегральный стабилизатор напряжения +5В (7805). В этом случае питание микросхемы нужно обеспечить от внешних источников постоянного тока, или имитировать шину +5VSTB путем подачи напряжения до стабилизатора напряжения. Все остальные выходные шины имитируются простой подачей необходимых напряжений на выходные шины блока питания. Для упрощения и уменьшения количества необходимого стендового оборудования можно все необходимые напряжения получить с заведомо исправного блока питания стандарта ATX. Отсутствие блокировки в слаботочных каналах имитируем подачей на 6 ножку микросхемы напряжения более чем 0,68 В (в исправном блоке питания на ножке висит напряжение около 0,86 В), для этого можно использовать питание микросхемы, т.е. закоротить между собой ножки 6 и 15. Далее точно также как и в предыдущем случае, контакт микросхемы PSON вывод 11, соединяем с общим проводником (GND), т. е. разрешаем запуск микросхемы. Если все подключения сделаны правильно микросхема AT2005B должна запустится. Работоспособность микросхемы проверяется наличием пилообразного напряжения на выводе 8 (Ст) и управляющих прямоугольных импульсов на ее выводах 9 и 10, которые также можно наблюдать в первичной обмотке согласующего трансформатора, что свидетельствует о исправности транзисторов согласующего каскада. 

             

  Рис. 2

Цепи обратной связи проверяются наличием напряжения на входе 2 (VADJ) и 16 (OPOUT). Отсутствие КЗ и обрыва в выходных шинах проверяется наличием напряжений на входах микросхемы 3(V3.3),4( V5),5( V12). Если управляющих импульсов на выходе микросхемы нет, то это свидетельствует о блокировке микросхемы (например через вывод 6 (PT) или неисправности самой микросхемы). Если же отсутствует пилообразное напряжение на выводе 8 микросхемы, то это свидетельствует об отсутствии должного напряжения на микросхеме или также ее неисправности. 
Итак можно сделать следующие выводы: 
- для проверки микросхемы из диагностического оборудования необходимы тестер, осциллограф, внешние источники постоянного тока или работоспособный системный блок питания; 
- проверка микросхемы практически не отличается от проверок микросхем ШИМ контроллеров аналогичного класса применяемых в системных источниках питания.
- методики поверки микросхемы должны применяться с учетом конкретных схемотехнических решений блоков питания в цепях питания микросхемы и цепях обратной связи; 
- применяя данную проверку также можно проверить и согласующий каскад блока питания, для этого необходимо по возможности отключить или выпаять силовые ключи блока питания и поверить наличие управляющих импульсов в первичной и вторичной обмотках согласующего трансформатора;
- по результатам данных проверок можно сделать вывод о работоспособности не только управляющей микросхемы, но оценить работу вторичных выпрямителей и согласующего каскада. 

Рис. 3

 


Лицензия