Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Многоканальные импульсные регуляторы напряжения (ликбез).

Многоканальные импульсные регуляторы напряжения (ликбез).

Микропроцессоры являются мощными потребителями энергии в современных компьютерах. Ток потребления современного микропроцессора может достигать величины нескольких десятков ампер. При этом качество питающего напряжения микропроцессора является важнейшим фактором, определяющим стабильность работы всей системы. Производители системных плат решают проблему обеспечения микропроцессора мощным и качественным питанием за счет использования многоканальных регуляторов напряжения.

Тактовая частота микропроцессоров неуклонно растет и достигает сейчас уже нескольких ГГц. Повышение тактовой частоты микропроцессора сопровождается значительным увеличением потребляемой им мощности, а, соответственно, это приводит и к увеличению температуры кристалла процессора. Кроме того, на энергопотребление микропроцессоров оказывает влияние и повышение количества транзисторов на его кристалле (чем современнее процессор, тем более высокой степенью интеграции он обладает). Хотя КМОП-транзисторы, составляющие основу микропроцессоров, потребляют в закрытом состоянии мизерные токи, но когда речь идет уже о многих миллионах транзисторов, расположенных на кристалле процессора, то пренебрегать этим уже не приходится. Основное потребление энергии КМОП-транзисторы осуществляют в момент его включения, и, естественно, что чем чаще транзисторы переключаются, тем большее количество энергии они потребляют. В результате, миллионы транзисторов, переключающихся с высокой частотой, способны обеспечить потребление микропроцессором такого тока, величина которого уже доходит до 50 и более Ампер. Таким образом, кристалл процессора начинает сильно разогреваться, что приводит к значительному ухудшению процессов переключения транзисторов и способно вывести их из строя. При этом решить проблему исключительно путем теплоотвода не удается.

Для профессиональных GPU, например GV100, который имеет площадь 815 мм2 и содержит 21,1 млрд транзисторов, и включает 5376 ядер CUDA все еще сложнее. CUDA – это архитектура параллельных вычислений от NVIDIA, позволяющая существенно увеличить вычислительную производительность благодаря использованию GPU (графических процессоров). Такие характеристики графического процессора обеспечивают производительность одного GPU на уровне суперкомпьютера.

Все это вынуждает производителей снижать питающее напряжение микропроцессоров, точнее, напряжение питания его ядра. Снижение питающего напряжения способно решить проблему мощности, рассеиваемой на кристалле микропроцессора и понизить его температуру. Если самые первые микропроцессоры семейства 80x86 имели питающее напряжение +5В (а впервые снижение напряжения до +3.3В было применено в I80486), то микропроцессоры последних поколений уже могут работать при питающем напряжении +0.5В (см. спецификацию VR11 от Intel).

Но дело в том, что такие низкие напряжения не вырабатываются системным источником питания, на его выходе формируются лишь напряжения +3.3V, +5V и +12V. Таким образом, на системной плате должен был появиться собственный регулятор напряжения, способный понизить эти «высоковольтные» напряжения до уровня, необходимого для питания ядра процессора, т.е. до величины 0.5 – 1.6 В (рис.1). Для этого используются импульсные многоканальные источники (регуляторы) напряжения.

 

Рис. 1.

Каждый канал представляет собой импульсный регулятор, который, переключаясь с высокой частотой, создает на своем выходе импульсы тока. Эти импульсы, естественно, должны сглаживаться, и для этого используются электролитические конденсаторы и дроссели. Но дело в том, что из-за большой токовой нагрузки, емкости конденсаторов и индуктивности дросселей, все-таки, не хватает для создания действительно постоянного напряжения, в результате чего, на шине питания процессора наблюдаются пульсации (рис. 2). Причем от этих пульсаций не спасает ни увеличение количества конденсаторов, ни увеличение емкости конденсаторов и индуктивности дросселей, ни увеличение частоты преобразования (если только не говорить об увеличении частоты в несколько раз). Естественно, что эти пульсации способны привести к нестабильной работе процессора.

 

Рис. 2.

Выход из этой проблемы и был найден в использовании многоканальной архитектуры регулятора напряжения. Но только лишь использованием нескольких параллельных каналов решить проблему, все равно, не удастся. Необходимо сделать так, чтобы ключи разных каналов переключались с фазовым смещением, т. е. они должны открываться поочередно. Это позволит сделать так, что каждый канал будет поддерживать выходной ток регулятора в строго отведенный период времени. Другими словами, сглаживающие конденсаторы будут подзаряжаться постоянно, но от разных каналов в разные моменты времени.

Так, например, при использовании 4-х канального регулятора, выходные конденсаторы подзаряжаются четыре раза за один тактовый период контроллера, т.е. импульсные токи отдельных каналов смещены по фазе друг относительно друга на 90° (см. рис. 3). Это соответствует увеличению частоты преобразования в 4 раза, и если частота переключения транзисторов каждого канала равна 1.5 МГц, то частота импульсов на сглаживающем конденсаторе будет составлять уже 6 МГц.

 

Рис. 3.

Таким образом, ШИМ-импульсы, которые формируются на выходе микросхемы главного контроллера (выходные сигналы PWM), должны следовать с определенным фазовым смещением и это фазовое смещение определяется внутренней архитектурой микросхемы и задается, как правило, уже на этапе проектирования микросхемы. Но некоторые контроллеры позволяют конфигурировать их под разные режимы работы: 2-фазное, 3-фазное или 4-фазное управление и т. д..

Пример реализации 4-х канального регулятора представлен на рис.4.

 

Рис 4.

 

 

 


Лицензия