Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Решение проблем с электропитанием компьютерных систем.

Решение проблем с электропитанием компьютерных систем.

Проблемы с электропитанием можно подразделить на две основные группы: проблемы, ведущие к повреждениям оборудования, и проблемы, вызывающие повреждение данных или приводящие к некорректной работе. Любое напряжение выше 230 В является повышенным, любое напряжение ниже 205 В - пониженным. Повышенное напряжение может привести к выходу из строя источников питания компьютеров и другого оборудования. Электромоторы перегреваются при пониженном напряжении. Для микрокомпьютеров обычно используют источники питания с автонастройкой, которые, к счастью, устойчивы к пониженному напряжению.

Аномалия в электропитании, которая особенно опасна для компьютеров и электроники вообще - это импульс, известный также как кратковременное повышение, выброс или колебание напряжения.

Импульс - это очень короткое повышение напряжения, причиной которого может служить удар молнии в силовую линию, включение определенного типа силовых устройств либо управление двигателем переменной скорости. Типичный импульс, величина которого может составлять от нескольких сотен до нескольких тысяч вольт, вызывает серьезное нарушение в работе сети переменного тока, но только на несколько микросекунд.

Отключение энергии - проблема, требующая наиболее пристального внимания. Не заметить полную потерю питания действительно довольно сложно. Кратковременное отключение энергии - длящееся лишь от полупериода до пары периодов волны - часто называют выпадением питания.

Радиочастотная интерференция ведет к возникновению электрошума, который накладывается на предполагаемо чистую, синусоидальную волну при частоте 50 Гц. И если этому шуму удастся пройти через блок питания в питающую шину компьютера, компьютер может ошибочно интерпретировать его как данные.

Когда отдельный компьютер или сеть компьютеров заземляют в нескольких точках, образуются нежелательные контуры заземления. Предполагается, что монтаж разводки питания в доме или офисе заземляется через одну точку - вход питания (другими словами, через главную распределительную панель, по которой электроэнергия подводится к зданию). Если монтаж сети переменного тока в здании выполнен так, что заземление осуществляется в двух или большем числе точек, то формируется замкнутая цепь, позволяющая токам циркулировать через заземление. Проблема токов в земле возникает потому, что все провода обладают различным сопротивлением, и токи, циркулирующие в цепи, вызывают различное падение напряжения в заземленных проводах. И это несмотря на то, что все они, как предполагается, имеют нулевой потенциал. Различие напряжений может вызвать все что угодно, начиная от биений с тактовой частотой 50 Гц до высокочастотных шумов, которые могут вести к неправильной интерпретации данных компьютером.

Существует несколько путей борьбы с проблемами электропитания. Первым шагом должна быть корректная оценка исходной ситуации, в которой вы находитесь. Сначала надо удостовериться в правильном подведении проводки ко всем электрическим выходам (в ряде стран, например, правильное подсоединение цепи переменного тока с напряжением 120 В обеспечивается трехпроводной розеткой, в которой нейтраль - слева, фаза - справа, отверстие снизу - земля, если смотреть на розетку, установленную в стене). Обычные ошибки в подключении проводки проявляются в том, что оказываются перепутаны фаза с нейтралью или заземление с нейтралью.

Некоторые фирмы изготавливают системы мониторинга сети переменного тока, вставляющиеся в розетки. Некоторые из этих устройств даже снабжены самописцами, отмечающими на бумаге происходящие скачки и другие аномалии напряжения. Имеются также системы мониторинга, представляющие собой стационарные устройства, сохраняющие полученные данные в памяти. Большинство силовых систем мониторинга - это самостоятельные устройства, которые попросту подключаются к силовой розетке и измеряют напряжение. Такие устройства можно использовать без риска быть пораженным током. То же самое относится и к тестерам полярности проводов. Не следует пытаться протестировать розетку или распределительную панель ручным вольтметром до тех пор, пока вы точно не будете знать, что вы делаете. При измерении напряжения необходимо установить многие параметры. Какова его полярность? Постоянно ли напряжение или изменяется во времени? Отклоняется ли оно от номинального? Особенно пристальное внимание надо обратить на напряжение в точке использования - розетке, в которую подключен компьютер, а следовательно, проследить правильность подсоединения концов ветвей контура, питающих наиболее важные системы. С целью диагностики может оказаться полезным измерить напряжение на входе питания.

Если на входе напряжение падает ниже допустимых пределов, следует обратиться в обслуживающую вас электрослужбу. В большинстве энергетических компаний имеются подразделения, которые тщательно рассмотрят эту проблему. Выясните, каковы предельные значения напряжения, которое вам будет поставляться. Если входное напряжение (в розетке) отклоняется от номинального - оказывается значительно ниже допустимого уровня либо заметно падает при подключении емких потребителей энергии - это может означать неадекватность вашей проводной системы или то, что вы подключаете в один контур слишком много потребителей энергии. Чтобы исправить такое положение вещей, попросите своего электрика проверить монтажные схемы электропроводки, а также просуммируйте всю нагрузку на цепь, чтобы оценить, насколько она соответствует означенным параметрам. В случае перегрузки цепи можно перераспределить несколько потребителей энергии на другие контуры питания, модернизировать контур, заменив провода на провода большего сечения или добавить новый контур для части потребителей.

Можно установить питающий контур, который снабжает энергией только компьютеры и никакое другое электрооборудование. Это потребует прокладки пары проводов и заземления электрического выхода от главной распределительной панели до компьютеров. При таком соединении вы избавлены от падения напряжения при включении других типов потребителей, поскольку их в этом контуре попросту нет.

Обычно, чтобы защититься от бросков напряжения, используют проходной фильтр (импульсный подавитель - transient suppressor). «Активной составляющей» импульсного подавителя обычно служит металло-оксидный варистор, являющийся нелинейным резистором. Метало-оксидный варистор подсоединяется как шунт между фазой и нейтралью и обладает очень высоким сопротивлением, пока напряжение остается ниже некоторого порогового значения, например 280 В. Однако, если напряжение превышает это значение, то сопротивление варистора резко падает и он передает импульс на нейтраль. Еще один тип импульсных подавителей - это активный электронный контур, блокирующий цепь от воздействия импульсов.

Радиочастотные фильтры (RFI), сделанные из катушек индуктивности и конденсаторов, проводят радиочастоты ниже определенного значения (например, 1 КГц) и сглаживают сигналы выше этой частоты. Частота поставляемого промышленно напряжения (50 Гц) значительно ниже отсекаемой частоты, поэтому она передается прямо через фильтр, между тем как радиочастотное колебание, которое обычно меняется в пределах от килогерц до мегагерц, блокируется.

В зависимости от конструктивного исполнения, импульсные подавители и радиочастотные фильтры могут не отсекать синхронные импульсы или синхронные радиосигналы. Синхронные сигналы - это сигналы, которые достигают фазы и нейтрали одновременно. Устройством, которое может использоваться для фильтрации синхронных сигналов, является трансформатор. В трансформаторе, в зависимости от тока, текущего в первичной обмотке и образующего магнитное поле, индуцируется напряжение во вторичной обмотке. Синхронные же импульсы, возникающие в первичной обмотке, не вызывают в ней тока, поэтому на вторичной обмотке напряжение не индуцируется. Несмотря на то, что синхронные сигналы не пропускаются трансформатором индуктивно, они могут частично проходить через трансформатор из-за наличия емкостных связей. В большинстве трансформаторов первичная и вторичная обмотки причиняют неприятности друг другу, находясь одна над другой. Изоляция обмоток делает работу трансформатора более эффективной. Однако физическая изоляция двух обмоток делает возможным емкостное пропускание синхронных сигналов с первичной на вторичную обмотку и наоборот. Трансформаторы с изоляцией снабжены электростатической защитной оболочкой (обычно это лист тяжелой медной фольги), расположенной непосредственно между двумя обмотками или между обмоткой и железной сердцевиной. Чтобы обеспечить отвод высокочастотной составляющей, защитная оболочка заземляется; это делается вместо замыкания на другую обмотку.

Существуют и иные силовые защитные приспособления, известные как регуляторы мощности или линейные регуляторы. Регуляторы мощности часто содержат изолированные трансформаторы; многие из них включают в себя импульсные подавители и радиочастотные фильтры. Некоторые регуляторы снабжены многопозиционными трансформаторами, способными посредством переключателей настраивать выходное напряжение.


Лицензия