Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Принципы построения и работы цветных сканеров.

Принципы построения и работы цветных сканеров.

Сканер представляет собой достаточно сложное электромеханическое устройство. В составе оборудования сканера имеются оптические узлы, механические компоненты и электронные схемы управления, традиционно построенные на базе микропроцессорной техники.

Цветные сканеры имеют более сложный и более точный механизм регистрации отраженного луча, чем черно-белые. Отраженный от оригинала луч проходит более длинный путь, поскольку для сканирования цветных изображений он проходит еще и через светофильтры для разложения на красную, зеленую и голубую составляющие. Луч света соответствующего цвета падает на оригинал, отражается от него и через систему зеркал попадает на светочувствительные элементы, где преобразуется в электрический заряд в элементах ПЗС соответствующих красной, зеленой и голубой компоненте цветной точки оригинала.  Эти заряды из линейки ПЗС последовательно считываются и поступают на аналого-цифровые преобразователи, где конвертируются в цифровые эквиваленты, образующие по три цифровые компоненты для каждой цветной точки строки оригинала. Эта цифровая информация передается в блок памяти для дальнейшей обработки.

Разрешение сканера характеризует дискретность сканирования точек оригинала. В сканерах различают два типа разрешения - оптическое и интерполированное. Оптическое разрешение описывает возможности аппаратной (оптической) части сканера. Для увеличения четкости деталей оригинала применяются специальные программные алгоритмы, это второе разрешение называется интерполированным.  Обычно оно увеличивает максимальное разрешение сканера в четыре раза (например, оптическое разрешение сканера 600 dpi, а максимальное интерполированное -  2400 dpi). Поскольку интерполированное разрешение обеспечивается программными методами, при его использовании качество сканированного оригинала может быть несколько хуже, но практически сканеры обеспечивают приемлемое качество и при интерполированном разрешении.

В современных сканерах в основном используются две технологии построения элементов, осуществляющих непосредственный прием изображения сканируемого документа. Этими технологиями являются:

               - контактные датчики изображения (CIS – Contact Image Sensor);

               - приборы с зарядовой связью – ПЗС (CCD – Charge Coupling Device).

И те, и другие имеют положительные и отрицательные отличия, причем, как в стоимости устройств, так и в качестве получаемого изображения.

Контактные датчики изображения (CIS) представляют собой единую систему, состоящую из источника света, фокусирующей линзы (точнее набора линз) и фотоприемников. Достаточно часто все это называют  сканирующей головкой.  Такая сканирующая головка не содержит оптической системы, состоящей из набора зеркал и линз, что значительно упрощает  систему сканирования, уменьшает ее габариты, и, естественно, уменьшает стоимость. Сканеры, имеющие такую систему приема изображения очень компактны. Для считывания всей строки изображения сканирующая головка содержит множество источников света (светодиоды) и еще большее количество фотоприемников (в цветных сканерах каждому источнику света соответствует три фотоприемника). Количество светодиодов должно соответствовать разрешающей способности сканера. Фокусировка изображения обеспечивается набором линз, причем количество линз будет точно таким же, что и количество светодиодов. Фокусное расстояние этих линз выбирается еще на стадии разработки сканера, и эти линзы имеют малую глубину резкости (± 0.3 мм). Это значит, что удаление (или приближение) сканируемого объекта от CIS приводит к потере качества – изображение «размывается» и становится более темным. Этот эффект хорошо демонстрируется при сканировании разворотов книг – центр разворота получается очень темным. Малая глубина резкости также не дает хорошего качества сканирования трехмерных объектов.

Приборы с зарядовой связью ПЗС (CCD) традиционно выполняются в виде единого модуля, обеспечивающего прием изображения всей строки. В составе такого модуля имеются фотоэлементы, количество фотоэлементов в модуле также должно соответствовать разрешающей способности сканера, т.е. каждой сканируемой точки должен соответствовать свой фотоприемник (а в цветных – каждой точке соответствует три фотоприемника). Длина строки ПЗС значительно меньше реальной длины сканируемой строки, поэтому (и не только поэтому) требуется применение оптической системы, обеспечивающей фокусировку изображения. В результате, сканеры такого типа имеют довольно сложную и громоздкую оптическую систему, требующую очень сложной и тонкой настройки. Соответственно, стоимость подобных устройств несколько выше. Но основным преимуществом ПЗС-технологии является более высокое качество получаемых изображений. В отличие от контактных датчиков изображения, ПЗС имеют значительно большую глубину резкости оптической системы – до ± 3 мм, что приводит к гораздо лучшему результату при сканировании объемных изображений. К недостаткам ПЗС-систем можно отнести неравномерность качества отсканированного изображения в центральной зоне и на краях. На краях, обычно, изображение получается более затемненным, что связано с неидеальностью оптической системы и с особенностями распределения света сканирующими лампами. Для компенсации такого эффекта в сканерах применяются различные программные способы коррекции отсканированного изображения.

Эти способы коррекции подразумевают построение специального шаблона коэффициентов усиления сигналов от ПЗС, определение и установка уровня черного цвета, определение и установка уровня белого цвета, построение кривой γ-коррекции и т. п. С возложенной на них задачей программы коррекции справляются достаточно эффективно. Сравнительный анализ двух технологий приведен в табл. 1.

 Таблица 1

Параметр, характеристика

CIS – технология

CCD – технология

Габариты и вес сканирующего узла и сканера в целом

Меньше

Больше

Стоимость сканера

Меньше

Больше

Потребляемая мощность

Меньше (в среднем 2,5 Вт)

Больше (в среднем 12 Вт)

Равномерность отсканированного изображения

Хорошая

Хуже (необходимо корректировать)

Глубина резкости

Малая (около ± 0.3 мм)

Большая (около 3 мм)

Разрешающая способность

Меньше (600 ppi)

Высокая (до 3000 ppi)

Ресурс работы

Малый (через 500 часов яркость уменьшается в среднем на 30%)

Большой (до 10.000 часов)

Чувствительность к оттенкам серого

Хуже

Хорошая

Погрешность при определении оттенка серого

Хуже (до 40%)

Хорошая (до 20%)

Чувствительность к постороннему свету

Более чувствительна (хуже)

Менее чувствительна (хорошо)

Требования к хорошим условиям эксплуатации

Менее требовательна

Более требовательна

 

При сканировании изображения,  свет копироваль­ной лампы сканера отражается от оригинала и проецируется с помощью зеркал и линзы на преобразователи лучей света в электрический заряд в качестве которых используются, например, полупроводниковые приборы с зарядовой связью (ПЗС). Изображение  (оригинал) которое нужно скопировать кладется на стеклянную крышку копировальной панели и на него направляется свет от сканирующей лампы (рис. 1). От светлых участков оригинала отражается больше света, чем от темных, поэтому и на соответствующие элементы ПЗС воздействует свет различной яркости и формируются соответствующей величины заряды. ПЗС обычно объединяют в линейки, которые могут одновременно получить отраженный от «строки» оригинала  поток света и преобразовать световую энергию, отраженную от каждой точки «строки» оригинала в пропорциональный ей электрический заряд. Заряды каждой точки последовательно считываются с ПЗС линейки и аналого-цифровой преобразователь (АЦП) блока обработки изображения, преобразует заряд каждого элемента линейки ПЗС в соответствующий ему цифровой код (например, в 8-разрядный, 12-ти или 14-ти разрядный). Затем, полученное таким образом, цифровое изображение строки оригинала запоминается в буферной памяти сканера.

 etSMz68F.png (584×291) 

Рис. 1. Принцип построения сканера (единый, перемещающийся относительно неподвижного стола, модуль с оптической системой и ПЗС-матрицей)

 

В подавляющем большинстве современных сканеров используются приборы с зарядовой связью (ПЗС) - термин, эквивалентный английскому обозначению Charge-Coupled Device (CCD). ПЗС - это твердотельный электронный компонент, состоящий из множества крошечных датчиков, которые преобразуют интенсивность падающего на них света в пропорциональный ей электрический заряд.

В зависимости от типа сканера ПЗС могут иметь различную конфигурацию. При линейном способе считывания информации цветного трехпроходного сканирования микродатчики ПЗС размещаются на кристалле в одну линию или в три линии для цветного однопроходного сканирования. Такая конфигурация позволяет устройству производить выборку всей ширины исходного аналогового изображения и записывать его как полную строку.

Корпорация Hewlett-Packard использует принципиально иной подход, по ее технологии вместо светофильтров используется расщепляющая спектр оптика, которая позволяет уйти от этих проблем, но и порождает другие, но уже чисто оптические, ошибки преобразования. Управление работой таких матриц осуществляется с помощью кварцевого генератора и соответствующих логических схем, отвечающих за синхронизацию тактирующих импульсов. Эти импульсы обеспечивают переключение управляющих потенциалов и, таким образом, инициируют сдвиговую передачу накопленных зарядов в специальные буферные регистры, надежно защищенные от светового воздействия.

ПЗС-матрицы фирмы Eastman Kodak имеют  две оригинальные конструктивные особенностей. Первая особенность связана со встроенной логикой управления временем экспозиции, осуществляемого путем смещения в ту или иную сторону времени выдачи тактового импульса, который открывает «перемычки» между приемными и передающими «ямами». Вторая особенность состоит во включении в ПЗС-цепочку дополнительных, закрытых от света и расположенных по краям фотоэлементов, которые инициируют «нулевой» заряд, используемый в качестве базовой точки в ходе преобразования накопленных зарядов в напряжение. Первая из перечисленных возможностей, реализует технологию Dynamic Range Control, которая обеспечивает увеличение экспозиции при сканировании темных мест изображения. В сканерах копиров работающих со слайдами ПЗС-датчики обычно имеют форму прямоугольной матрицы, что позволяет формировать образ оригинала целиком, а не построчно (как при матричном способе формирования изображения).

В любом сканирующем устройстве качество получаемых цифровых изображений в большой степени определяется конструктивной реализацией механизма сканирования, особенностью оптической системы, а также от качества, работающих в паре, двух центральных компонентов блока оцифровки изображений:

- трехлинейной светочувствительной матрицы (чаще называемой ПЗС-матрицей);

- аналогово-цифрового преобразователя (АЦП).

С другой стороны, огромную роль в формировании возможностей сканера играет его программное обеспечение, позволяющее производить сложную обработку и преобразование цифровых описаний цветных изображений. В цифровых копирах, как известно, копия по качеству может быть значительно лучше оригинала.

Оцифровка сканируемого изображения в большинстве сканирующих устройств (среднего класса) выполняется с перемещением каретки сканирующей лампы. Механика такой оцифровки состоит в том, что сканирующая лампа, последовательно меняет свое положение, относительно размещенного на столе оригинала, на величину шага, минимальная величина которого определяет механическое разрешение сканера. При этом отраженный от непрозрачного оригинала (или прошедший сквозь прозрачный оригинал) свет фокусируется через оптическую систему на ПЗС-матрицу, находящуюся под ложем сканера. 

Существует несколько вариантов построения кинематики таких сканеров, различающихся по числу и типу подвижных компонентов.

Наиболее распространенный и менее дорогой вариант использует единый (рис. 1), перемещающийся относительно неподвижного стола, модуль с оптической системой и ПЗС-матрицей, в котором происходит обработка светового потока с отсканированной информацией.

Значительно реже применяется конструкция с неподвижной ПЗС-матрицей, в которой сканирование осуществляется либо за счет движения стола с оригиналом, либо перемещением ламп и компонентов оптической системы.

Конечно, физические принципы построения полупроводниковых ПЗС-структур обуславливают преимущества и недостатки перечисленных вариантов, а любые внешние воздействия, способные даже незначительно повысить рабочую температуру светочувствительных полупроводниковых элементов, приводят к возникновению в них паразитных токов. Кроме того, имеются погрешности, связанные с обработкой светового потока в подвижной оптической системе, кроме того, любой,  даже идеально собранный, механизм со временем изнашивается, что и приводит к снижению точности работы.  Очень редко на практике в сканирующих устройствах используют почти стационарную оптическую систему, в которой движется только линза авто-фокусировки и неподвижна ПЗС-матрица (рис. 2). Оптическая система играет главную определяющую роль в формировании отчетливого изображения, существенное значение имеет большая глубина резкости и использование длиннофокусной оптики. Как видно из рис. 2, в процессе сканирования сборка с лампой, зеркалами и линзами «догоняет» вторую оптическую сборку, гарантируя постоянство оптического пути, длину которого разработчики этих сканеров намеренно увеличили.

Характеристики сканера обычно определяют тремя основными показателями:

- разрешением,

- глубиной цвета,

- динамическим диапазоном.

Истинное оптическое разрешение, часто выражается в dpi (dots per inch -  точек на дюйм), и определяет число элементарных участков поверхности сканируемого оригинала, информация о которых воспринимается одной линейкой (при цветном трехпроходном сканировании), или тремя светочувствительными линейками ПЗС-матрицы (по одной линейке на  красный, зеленый и синий цвет). Разрешение сканера правильнее отражается не в dpi, так как эта единица измерения более характерна для принтеров, которые формируют цветовые оттенки и элементы изображения из мельчайших растровых точек, а в ppi (pixels per inch -  пикселов на дюйм) - эта единица измерения, оперирует прямоугольными элементами (пикселами) конкретной величины.

Величина оптического разрешения сканера и размер пиксела напрямую определяются числом светочувствительных элементов ПЗС-матрицы, размещенной параллельно одной из сторон ложа сканера. Это разрешение имеет естественные границы, которые можно расширить, лишь сокращая размер сканируемой области, приходящейся на длину светочувствительной линейки. Делается это с помощью оптических систем с переключаемыми линзами, которые обеспечивают экспонирование встроенных ПЗС-структур световым потоком, сканирующим либо всю ширину ложа, либо только его часть (как правило, центральную). Существует оригинальный способ увеличения разрешения цветных (монохромных) сканеров в котором на каждый из трех цветов установлена не одна, а целых две ПЗС-линейки, сдвинутые друг относительно друга на половину шага.

etSMz68G.png (665×249)

Рис. 2. Принципиальная схема механизма с неподвижной ПЗС-матрицей

 

Для простых цветных сканеров обычно используют 8-разрядные АЦП (256 градаций или цветов). Для правильного восприятия передаваемого через оптическую систему светового потока  в высококачественных цветных сканирующих устройствах все чаще устанавливают АЦП с повышенной разрядностью (обычно в данном классе устройств максимальная разрядность АЦП составляет 12-14 бит), что позволяет увеличивать число воспринимаемых оттенков до 4,4 биллиона цветов. В случае использования 14-разрядного АЦП по каждому цветовому каналу, но в этом случае необходимо использовать высококачественные ПЗС-матрицы, так как если в применяемой ПЗС-матрице имеются большие паразитные токи, а из 14 разрядов установленного в сканере АЦП достоверными являются лишь 12, то эти цифры теряют всякий смысл.

Технические параметры ПЗС и АЦП сканера являются малоизвестной информацией (такой информацией иногда не владеют даже дистрибьюторы), поэтому предварительное тестирование покупаемого аппарата полезная и необходимая процедура.


Лицензия