Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Что дает перемещение контроллера памяти непосредственно в процессор?

Что дает перемещение контроллера памяти непосредственно в процессор? 

                 Перемещение контроллера памяти непосредственно в современные процессоры достаточно сильно сказывается на общей производительности компьютерных систем. Главным фактором тут является исчезновение «посредника» между процессором и памятью в лице «северного моста». Производительность процессора больше не зависит от используемого чипсета и, как правило, вообще от системной платы (т.е. последняя превращается просто в объединительную панель). 

                Конкретные контроллеры чипсета продолжают оказывать влияние на производительность дисковой системы или периферийных интерфейсов, но процессоры начиная с архитектуры Sandy Bridge уже были от этого влияния освобождены. С другой стороны, производительность центральных процессоров в зависимости от выбранной конфигурации системы памяти может меняться совершенно нелинейным образом. Просто потому, что контроллер памяти теперь неотъемлемая составляющая самого процессора, так что на него могут влиять другие компоненты. И он сам на них влиять может — например, кого ранее заботило энергопотребление или тепловыделение чипсета. Теперь же «лишние» ватты и градусы добавляются к процессору, что вполне может сказаться и на пороге тротлинга, уменьшая, тем самым, и производительность вычислительных блоков. Плюс к тому возросла роль задержек — естественно, время доступа всегда сильно сказывалось на итоговой производительности, однако ранее эффект сильно нивелировала сложная схема доступа к памяти (пока запрос к ней доходил от процессора, он успевал на каждом этапе «обрасти» дополнительными задержками). Интегрированный контроллер памяти (ИКП) весьма эффективно с ними борется, существенно снижая общую латентность, однако тем большее значение начинают иметь собственные задержки модулей памяти, или самого контроллера — «посредники» теперь отсутствуют, общее время снижается в разы, так что уже каждая наносекунда на счету. 
                В процессорах AMD интегрированный контроллер памяти использовался уже более шести лет (до появления архитектуры Sandy Bridge), так что те, кто этим вопросом уже интересовался, достаточное количество информации накопить успели. Однако для процессоров Intel, занимающих куда большую долю рынка (а, следовательно, и для большинства пользователей) актуальным изменение характера работы системы памяти стало только вместе с выходом действительно массовых процессоров компании с интегрированным контроллером памяти. 
                Оперативная память следующего поколения, DDR4 SDRAM, сможет привнести в серверные, настольные и мобильные платформы значительное увеличение производительности. Но достижение новых рубежей быстродействия требует радикальных изменений в топологии подсистемы памяти. Эффективная частота модулей DDR4 SDRAM составит от 2133 до 4266 МГц, что несколько выше предыдущих прогнозов (по всей видимости, частоты до 2133 МГц смогут быть покрыты еще модулями DDR3 SDRAM). Перспективные модули памяти окажутся не только быстрее, но и экономичнее своих предшественников. Они будут использовать пониженное до 1,1-1,2 В напряжение питания, а для энергоэффективной памяти штатным станет напряжение 1,05 В. Производителям чипов DRAM при изготовлении микросхем DDR4 SDRAM придётся прибегать к использованию самых передовых производственных технологий. 
                Массовый переход на использование DDR4 SDRAM прогнозировался на 2015 год, но при этом необходимо иметь в виду, что экстремально высокие скорости работы памяти нового поколения потребуют внесения изменений в привычную структуру всей подсистемы памяти. Дело в том, что контроллеры DDR4 SDRAM смогут справиться лишь с единственным модулем в каждом канале. Это значит, что на смену параллельному соединению модулей памяти в каждом канале придёт чётко выраженная топология точка-точка (каждая установленная планка DDR4 будет задействовать разные каналы). Чтобы гарантировать высокие частоты спецификация DDR4 поддерживает только один модуль на каждый контроллер памяти. Это означает, что производителям потребуется увеличить плотность чипов памяти и создать более продвинутые модули. В то же время тайминги будут расти, хотя время доступа продолжит снижаться. 
                Потребность в DDR4 возникнет сразу же после того, как DDR3 полностью исчерпает свои возможности. На сегодняшний день возможности архитектуры DDR3 вряд ли можно назвать исчерпавшими себя, так что пока есть смысл продолжать развитие этого стандарта и дальше. 
                Компания Samsung Electronics освоила выпуск многоярусных 512-Мбит чипов DRAM по технологии TSV. Именно эту технологию планирует использовать для выпуска DDR4. Таким образом, планируется добиться выпуска относительно недорогих чипов памяти DDR4 очень высокой ёмкости.
                Ещё один хорошо известный и уже зарекомендовавший себя способ - использование техники так называемой "разгружающей памяти" - LR-DIMM (Load-Reduce DIMM). Суть идеи состоит в том, что в состав модуля памяти LR-DIMM входит специальный чип (или несколько чипов), буферизирующих все сигналы шины и позволяющих увеличить количество поддерживаемой системой памяти. Правда, не стоит забывать про единственный, пожалуй, но от этого не менее существенный недостаток LR-DIMM: буферизирование неизбежно ведёт к дополнительному увеличению латентности, которая у памяти DDR4 по определению будет и без того немаленькая. Для сегмента серверных и high-end вычислений, где востребован очень большой объём памяти, предлагается совершенно иной выход из ситуации. Здесь предполагается использование высокоскоростной коммутации специальными многовходовыми чипами-коммутаторами.
                Переход на новый тип памяти отчасти тормозится технической неготовностью индустрии к выпуску DDR4. Меньшее напряжение питания транзисторных ядер, и, соответственно, меньшее энергопотребление чипов будут реальны только с использованием 20-нм норм техпроцесса и менее (стандарт DDR4 в окончательной редакции был принят JEDEC еще в 2012 году).


Лицензия