Статья добавлена: 29.09.2021
Категория: Ремонт ПК
Конфигурации дисков в разметке GPT на UEFI-системе (ликбез).
Таблица разделов GUID Partition Table (GPT) позволяет использовать жесткие диски размера 9,4 ZB (зетабайт). Терабайт составляет 1024 Гб, а зетабайт является 1024x1024x1024 Гб. Отсутствует ограничение на 4 основных раздела, и как следствие-отсутствие необходимости в логических разделах. Обеспечивается повышенная безопасность - GPT хранит резервную копию таблицы разделов в конце диска, поэтому в случае неполадок существует возможность восстановления разметки при помощи запасной таблицы. Защита от повреждения устаревшими программами посредством Protective MBR. Существует возможность использования старых загрузочных секторов. UEFI обеспечивает поддержку альтернативных средств ввода данных, таких как виртуальные клавиатуры и сенсорные дисплеи. Администраторы получили в своё распоряжение расширенные инструменты удалённого управления и средства диагностики, а пользователи - возможность запускать приложения вроде браузера и медиаплеера, не загружая ОС. Возможны различные конфигурации GPT-диска, есть конфигурации по умолчанию, есть и рекомендуемые конфигурации.
Конфигурация по умолчанию. Включает в себя раздел со средствами среды восстановления Windows, системный раздел, резервный раздел Microsoft(R) (MSR) и раздел Windows. Эта конфигурация представлена на рис. 1: ...
Рекомендуемая конфигурация. Включает в себя раздел со средствами среды восстановления Windows, системный раздел, раздел MSR, раздел Windows и раздел с образом для восстановления. Эта конфигурация представлена на рис. 2: ...
Статья добавлена: 23.09.2021
Категория: Ремонт ПК
Советы специалистов по повышению эффективности обучения.
Для освоения знаний по компьютерной и другой сложной технике в объеме, который необходим для ее ремонта, обычно не требуется специальное высшее образование по вычислительной технике, множество примеров подтверждают это, но необходимым условием успешного освоения знаний по технологиям ремонта компьютеров является личный интерес и большое желание стать профессионалом в этой области техники.
Профессиональная работа требует постоянного труда, постоянного изучения новой информации, новых устройств, новых технологий, используемых в компьютерной, копировальной технике и ее ремонте. Несомненно, если у Вас высшее образование (даже пусть не в области компьютерной техники) и Вы уже обладаете умением самостоятельно изучать предмет, то процесс обучения пойдет гораздо быстрее и успешнее.
«Метод исследований и диагностики явлений – самая первая, основная вещь. От метода, от способа действий зависит вся серьезность исследования. При хорошем методе и не очень талантливый человек может сделать очень много. А при плохом методе и гениальный человек будет работать впустую, и не получит ценных, точных знаний» (И. П. Павлов).
Первое, что необходимо помнить, так это то, что изучение надо начинать с начального предварительного изучения учебного материала, при этом не нужно останавливаться на непонятных деталях, незнакомых терминах (их нужно помечать для последующего целевого изучения), а надо попытаться понять главные моменты учебного материала и их основной смысл. Если Вы осознали основные моменты раздела, то переходите к разбору непонятных терминов и деталей.
Народную мудрость: «повторение - мать учения» - еще никто не отменил, поэтому, после выяснения непонятных деталей, еще раз, внимательно проработайте «с ручкой в руке» весь изучаемый раздел, и попробуйте составить краткий конспект раздела (при фиксации знаний на бумаге в мозгу человека сначала формируется осмысленная, четко сформулированная, модель информации, которая затем переносится на бумагу).
Только когда новая информация прочно Вами усвоена можно переходить к ее осмыслению, анализу и практическому использованию. Попытайтесь представить себе, где Вы, исходя из предыдущего практического опыта, могли бы применить «новые знания» в процессе диагностирования и ремонта аппаратуры. Нет знания у того, кто не размышляет, чтение без рассуждения не приносит пользы! Если Вы не будете использовать полученные новые знания в практической деятельности, то через некоторое время эти знания будут вытеснены новой информацией и возможно будут потеряны.
Статья добавлена: 13.07.2021
Категория: Ремонт ПК
Поддержка карт памяти в планшетах.
Возможно расширение встроенной памяти планшета с помощью карт памяти.
В современных планшетах используются карты памяти следующих форматов: SD, SDHC, SDXC, microSD, microSDHC. Существуют четыре поколения карт памяти данного формата, различающиеся возможным объёмом данных (совместимы сверху вниз):
SD 1.0 — от 8 МБ до 2 ГБ;
SD 1.1 — до 4 ГБ;
SDHC — до 32 ГБ;
SDXC — до 2 ТБ.
MicroSD съемные карты (миниатюрные Secure Digital флэш - память) первоначально были названы T-Flash или TF, аббревиатуры TransFlash. TransFlash и MicroSD карты функционально идентичны. SD – единственный тип карт памяти, в котором все данные шифруются.
SD(Secure Digital) — один из самых распространенных форматов хранения данных. SD-карты отличаются компактными размерами (32х24х2мм - рис.1) и возможностью защиты хранящейся на них информации от копирования. К достоинствам флэш-карт данного типа также можно отнести высокую скорость записи/чтения, повышенную защиту информации от случайного стирания или разрушения, механическую прочность и низкое энергопотребление.
SDHC(Secure Digital High Capacity) является расширением формата Secure Digital и позволяет выпускать карты памяти емкостью более 4 Гб, в то время как объем карт стандарта SD ограничен 4 Гб. Карты памяти SDHC внешне очень похожи на SD, однако могут использоваться только с SDHC-совместимыми устройствами.
SDXC(Secure Digital eXtended Capacity) – дальнейшее развитие формата Secure Digital. Карты SDXC обеспечивают более высокие объем памяти (до 2 Тб) и скорость обмена данными (до 300 Мб/с). Для сравнения, карты формата SDHC, отформатированные в FAT32 имеют ограничение в 32 Гб.
microSD(Micro Secure Digital Card) — формат, позволяющий выпускать суперкомпактные съемные устройства флэш-памяти. Их размеры составляют 11х15х1 мм. Карты данного формата используются в первую очередь в мобильных устройствах, так как благодаря своей компактности позволяют существенно расширить память без увеличения размеров. Для обеспечения совместимости microSD с устройствами, поддерживающими стандарт SD, выпускаются специальные SD-адаптеры.
miсroSDHC(Micro Secure Digital High Capacity) является расширением формата microSD и позволяет выпускать карты памяти емкостью более 4 Гб. Карты памяти microSDHC внешне очень похожи на microSD, однако могут использоваться только с miсroSDHC-совместимыми устройствами. В некоторых планшетах нет возможности работать с картами памяти, но можно приобрести опциональный кардридер за отдельную плату
Карты SDHC не совместимы с устройствами, изначально рассчитанными только на SD-карты. Ключевым нововведением для SDHC-карт, позволившим им превзойти объём в 4 ГБ, стало введение посекторной адресации (аналогично жёстким дискам), в то время как обычные SD-карты имеют побайтную адресацию (как оперативная память) и, соответственно, при 32-разрядном адресе могут иметь объём не более 4 ГБ.
Некоторые устройства (кардридеры, коммуникаторы и др.), рассчитанные на работу только с картами SD, после смены программного обеспечения могут «научиться» работать с SDHC, если аппаратная поддержка данных карт была предусмотрена производителем.
Также следует обращать внимание на версию реализации карты SD(SD 1.0 или SD 1.1). Если её планируется использовать в старом устройстве, поддерживающем карты памяти объёмом до 2 ГБ, убедитесь, что она выполнена в версии 1.0, а не 1.1, иначе будут возникать сбои при форматировании и при заполнении карты памяти информацией.
Cтандарт SDXC(Secure Digital eXtended Capacity), поддерживающий карты объёмом до 2 TБ. Карты памяти SDXC UHS-I (версия 3.01) совместимы с SDHC-устройствами. Устройства с поддержкой SDXC обеспечивают поддержку карт предшествующих стандартов SD и SDHC. Карты SDXC UHS-II (версия 4.0) с SDHC-устройствами не совместимы.
Статья добавлена: 01.07.2021
Категория: Ремонт ПК
NVDIMM и SSD-диски.
Модули памяти NVDIMM (Intel) на базе энергонезависимой памяти 3D XPoint (Optane DC Persistent Memory) предназначены для установки в слоты для оперативной памяти и используют протокол работы памяти DDR4 с целью максимизировать производительность находящегося в непосредственной близости от микропроцессора накопителя данных. Клиенты, получившие эти модули, уже оценили их рекордную производительность. Microsoft тоже уже сообщила о рекордной производительности (сервера на базе Xeon Scalable и Optane DC Persistent Memory) в 13,7 млн. IOPS, уровень, которого они никогда не достигали ни на какой другой платформе».
Семейство модулей Optane DC Persistent Memory включает в себя накопители ёмкостью 128, 256 и 512 Гбайт. Модуль Optane DC Persistent Memory 512 Гбайт несёт на борту 10 многослойных микросхем памяти 3D XPoint, таким образом используя 640 Гбайт памяти и имея вдвое больше «избыточной» памяти, чем модули DDR4 SDRAM с ECC коррекцией ошибок.
Уровень производительности сервера с несколькими накопителями Optane DC Persistent Memory (в том, что касается случайных операций чтения и записи), впечатляет. Для сравнения, типичный серверный SSD с шиной PCI Express имеет производительность в 550–750 тысяч IOPS. Несколько накопителей Optane DC Persistent Memory могут предложить не меньшую скорость, чем несколько серверных SSD, при этом предлагая куда более высокую надежность.
Статья добавлена: 24.06.2021
Категория: Ремонт ПК
Расходные материалы для профилактического обслуживания ПК.
Тщательная регулярная чистка – это одна из самых важных операций профилактического обслуживания. Причиной многих неприятностей является пыль, которая оседает внутри компьютера. Пыль является теплоизолятором, который ухудшает охлаждение системы, в результате этого сокращается срок службы компонентов и увеличивается перепад температур при прогреве компьютера В пыли обязательно содержатся токопроводящие частицы, что может привести к возникновению утечек и даже коротких замыканий между электрическими цепями (недаром в аппаратуре военного назначения для защиты схем от влияния пыли, влаги и т.п. платы с электронными компонентами обычно покрывают специальным лаком). Некоторые вещества, содержащиеся в пыли, могут ускорить процесс окисления контактов, что приведет в конечном счете к нарушениям электрических соединений. В любом случае аккуратно и квалифицированно проведенная чистка компьютера пойдет ему только на пользу.
Для того чтобы качественно и профессионально почистить компьютер и все его компоненты, необходимо использовать специальные инструменты и соответствующие по качеству расходные материалы. Прежде всего необходим специальный раствор для чистки контактов, баллончик со сжатым воздухом, маленькая щетка, поролоновые чистящие тампоны и заземленный наручный браслет для снятия статических зарядов электричества. Кроме того, часто могут потребоваться клейкая лента, химически инертный герметик, силиконовая смазка и специализированный малогабаритный пылесос. Обычно этого перечня инструментов и химикатов достаточно для выполнения большинства активных профилактических операций.
Большинство использовавшихся ранее реактивов были признаны опасными для окружающей среды, поэтому химические составы многих чистящих растворов, используемых в электронике, за последнее время сильно изменились. Атомы хлора, входящие в состав молекул хлорсодержащих органических растворителей, вступают в реакцию с молекулами озона и разрушают их, поэтому использование таких веществ сейчас строго контролируется международными организациями. Большинству компаний, производящих химические реактивы для чистки и профилактического обслуживания компьютеров, приходится подыскивать заменители, безопасные для окружающей среды, но весьма существенным недостатком этих заменителей является дороговизна и низкая неэффективность.
В операциях чистки часто используются универсальные очистители. Для приготовления этих чистящих растворов используются разнообразные реактивы, но лишь пять из них находятся под особым контролем.
Статья добавлена: 24.06.2021
Категория: Ремонт ПК
Контакты на модулях памяти (золото или олово).
Контакты на модулях памяти компьютеров могут быть позолоченными или же покрытыми оловом. Для получения наиболее стабильной системы следует устанавливать модули памяти с позолоченными контактами в разъемы с позолоченными контактами, а модули памяти с оловянными контактами — в разъемы с оловянными контактами.
Многие просто не понимают, насколько важны характеристики электрических контактов модулей памяти, установленных в компьютерной системе. Обычно пользователи считают, что в любой ситуации предпочтительнее позолоченные контакты, однако на самом деле это не так. Если установить модули памяти с позолоченными контактами в разъемы с оловянными контактами или наоборот, то через некоторое время могут появиться дефекты в работе памяти. Ошибки возникают приблизительно через 6–12 месяцев после установки.
С подобными проблемами в работе компьютерных систем, обслуживающий персонал уже не раз сталкивался. Например, фирма обновила свой парк компьютеров, а через год в работе памяти всех новых компьютеров начали появляться ошибки. Проблема была связан с несоответствием металла, используемого в покрытии контактов модулей памяти и разъемов системной платы (модули памяти были с позолоченными контактами, а разъемы - с оловянными).
Вследствие взаимодействия золотых контактов с контактами из другого металла возникает так называемая фреттинг коррозия. При фреттинг коррозии оксид олова проникает в более твердую поверхность золота, что приводит к повышению сопротивления. Это всегда происходит при контакте золота и олова, независимо от того, какова толщина золотого покрытия. В результате фреттинг коррозии через определенное время (это зависит еще и от окружающей среды) сопротивление в точке контакта увеличивается, что влечет за собой ошибки в работе памяти.
Олово очень быстро окисляется. Однако при этом контакт между двумя оловянными по верхностями легко устанавливается при нажиме, поскольку оксиды на мягкой поверхности олова деформируются и “осыпаются”, тем самым обеспечивая контакт. А все модули памяти устанавливаются в разъем с нажимом, благодаря чему и обеспечивается хороший контакт. Но если в контакт вступают олово и золото, то, поскольку золото является твердым металлом, при нажиме оксид не разрушается, а повышение сопротивления приводит к сбоям в работе памяти. Совместно использовать позолоченные и оловянные контакты крайне нежелательно. Разумеется, наилучший вариант - установка модулей с позолоченными контактами в разъемы с такими же контактами.
Статья добавлена: 18.06.2021
Категория: Ремонт ПК
Отрицательное воздействие внешней среды. Пример поиска неисправности в системной плате ПК.
Общеизвестен факт, что отрицательное воздействие внешней среды и использование дешевых компонентов при пайке, непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. Персональный компьютер, стоящий на обслуживании у грамотного специалиста-мастера, практически никогда не выходит из строя. Мастер знает, как обращаться с сложной компьютерной техникой, и не допускает ситуаций, в которых могут появиться дефекты, но на практике часто возникают ситуации нарушающие нормальное функционирование техники по причинам, которых трудно избежать и при грамотной эксплуатации. Например, современные технологии изготовления печатных плат и безсвинцовые технологии пайки не только экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам электронных схем. Микроскопические проростки металла из мест пайки на печатной плате («усы» олова) — часто являются одной из причиной возникновения отказов современных электронных схем из-за замыканий между контактами и проводниками.
Представленная на ремонт системная плата, по словам ее хозяина, «нестабильно работает c модулями памяти», но все съемные ее компоненты исправны (это было установлено их установкой на точно такой же материнской плате в системном блоке). Были проведены измерения и было обнаружено, что напряжение питания памяти чуть ниже нормы (1.35В вместо 1.5В). Данные наших замеров говорили об отсутствии повышенной нагрузки на источник напряжения питания памяти.
Обычно модули оперативной памяти питаются током, имеющим определенное стандартное напряжение, величина которого зависит от типа и технологии изготовления модулей. Например, модули SDRAM в обычных условиях должны питаться током в 3,3В, модули DDR – 2,5В, модули DDR2 – 1,8В, а модули DDR3 – 1,5В. В последние годы были разработаны стандарты с еще более низким напряжением – DDR3L и DDR3U. Для модулей памяти, соответствующих первой спецификации, данная величина составляет 1,35В, а для соответствующих второй – 1,25В.
После анализа этой ситуации решили проверить работоспособность компонентов всей цепочки по которой формируется напряжение питания памяти (VCC_DDR). Исследование решили начать, естественно с источника напряжения питания памяти VCC_DDR.
Статья добавлена: 17.06.2021
Категория: Ремонт ПК
Подсистема ME, ISH, IE, и BMC (ликбез).
Начиная с PCH 100-й серии компания Intel полностью переработала эту микросхему. Был осуществлен переход на новую архитектуру встроенных микроконтроллеров - с ARCompact компании ARC на x86. За основу был выбран 32-битный микроконтроллер Minute IA (MIA), который использовался в микрокомпьютерах Intel Edison и SoC Quark. Он основан на дизайне весьма старого, скалярного микропроцессора Intel 486 с добавлением системы команд (ISA) от процессора Pentium. Однако для PCH компания выпускает данное ядро с применением 22-нм полупроводниковой технологии, получая высокую энергоэффективность микроконтроллера. Но теперь таких ядер в PCH 100-й серии три: Management Engine (ME), Integrated Sensors Hub (ISH) и Innovation Engine (IE). Последние два могут активироваться и деактивироваться в зависимости от модели PCH и целевой платформы, а ME-ядро работает всегда.
Подсистема Intel ME (Intel Management Engine).
Intel Management Engine - это закрытая технология, которая представляет собой интегрированный в микросхему Platform Controller Hub (PCH) микроконтроллер с набором встроенных периферийных устройств. Именно через PCH проходит почти все общение процессора с внешними устройствами, следовательно Intel ME имеет доступ практически ко всем данным на компьютере и возможность исполнения стороннего кода.
При инициализации системы Intel® Management Engine загружает свой код из флэш-памяти системы. Это позволяет Intel® Management Engine работать до запуска основной операционной системы. Для хранения данных во время выполнения процессор управления Intel® имеет доступ к защищенной области системной памяти (в дополнение к небольшому количеству встроенной кэш-памяти для более быстрой и эффективной обработки).
Intel® ME выполняет различные задачи, пока система находится в спящем режиме, во время процесса запуска и когда ваша система работает. Без ME не возможна загрузка процессора. ME имеет полный доступ к памяти (без всякого ведома на то родительского ЦПУ); ME имеет полный доступ к TCP/IP стеку и может посылать и принимать пакеты независимо от операционной системы, обходя таким образом её файрволл.
ME имеет свой MAC-адрес и IP-адрес для своего дополнительного интерфейса, с прямым доступом к контроллеру Ethernet. Каждый пакет Ethernet-траффика переадресуется в ME даже до достижения операционной системы хоста, причём такое поведение поддерживается многими контроллерами, настраиваемыми по протоколу MCTP.
Integrated Sensors Hub (ISH).
Концентратор датчиков - это микроконтроллер/сопроцессор/DSP, который помогает интегрировать данные от различных датчиков и обрабатывать их. Эта технология может помочь разгрузить эти задания от основного центрального процессора, тем самым экономя потребление батареи и обеспечивая повышение производительности. Начиная с Cherrytrail, несколько поколений процессоров Intel предлагают концентратор датчиков.
Возможности интегрированного сенсорного концентратора Intel:
Статья добавлена: 02.06.2021
Категория: Ремонт ПК
Компьютеры для бизнеса с технологией Intel vPro (ликбез).
В современных корпоративных сетях использование удалённого доступа для настройки и конфигурирования пользовательских ПК давно является стандартом. Компьютер для бизнеса на базе процессорной технологии Intel vPro - это оптимизированный для корпоративных пользователей ПК, который позволяет наиболее эффективно управляться и быть надежно защищенным внутри парка ПК предприятия. Эти настольные компьютеры имеют аппаратную поддержку средств защиты и дистанционного управления, которые обеспечивают защиту данных и предотвращают сбои в работе даже если такой бизнес-компьютер выключен или на нем не работает операционная система, что обеспечивает сокращение затрат на IT-администрирование и снижает количество вызовов администриторов на рабочие места.
В отличие от парка ПК небольшой организации, где управлять компьютерами относительно легко, в организации с десятками и сотнями компьютеров, поддерживать работу IT-инфраструктуры на порядки сложнее. Обслуживание парка компьютеров для бизнеса в большой организации требует привлечения большого количества средств, времени и увеличения IT-персонала. Даже такие задачи, как обновление ПО или инвентаризация может стать тяжелой задачей для среднего и большого предприятия. Для удобства обслуживания таких ПК используют различные системы управления парком бизнес-компьютеров. Но большинство из них требуют наличие работающей операционной системы, для них невозможна конфигурация настроек BIOS.
Решить такую сложную задачу, как управление парком компьютеров предприятия поможет технология Intel vPro. Технология разрабатывалась для совместной работы с программным обеспечением управления IT-инфраструктуры предприятия от различных производителей (таких как LANdesk, Microsoft и др.). При этом такие компьютеры, построенные на базе новейших процессоров Intel Core i5 и i7, производительны и энергоэффективны.
Компьютеры для бизнеса с технологией Intel vPro на базе процессоров Intel vPro имеют уникальные аппаратные технологии, открывающие новые возможности :
Статья добавлена: 01.06.2021
Категория: Ремонт ПК
Технологические причины отказов персональных компьютеров.
Современные технологии изготовления различного вида печатных плат и безсвинцовые технологии пайки - экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам.
Достаточно часто, в разговорах со специалистами по ремонту персональных компьютеров, можно услышать: «пропаял контакты микросхем, разъемов неисправной платы и она заработала, неисправность исчезла». Обычно такое «волшебство» пропайки объясняют плохим качеством паяного соединения, но действительно ли это так? Есть и более реальное объяснение. «Усы» олова — это микроскопические проростки металла из мест пайки на печатной плате, являются причиной возникновения отказов электронных схем из-за замыканий между контактами и проводниками. Общеизвестен факт, что отрицательное воздействие внешней среды непосредственно сказывается на показателях надежности печатных узлов и сборок, выполненных по современным технологиям.
При работе с безсвинцовыми припоями возникает ряд проблем, которые связаны с их физическими свойствами. Поэтому паяльные станции должны быть специально адаптированы для работы с безсвинцовыми припоями. Основные проблемы, которые могут возникнуть при пайке безсвинцовыми припоями:
- более высокая температура плавления пайки может повредить электронные компоненты, содержащие пластмассу, могут получить термический «шок» и сами компоненты;
- может возникнуть деформация печатных плат;
- будет наблюдаться слабая увлажненность и растекание в связи с возрастающим эффектом окисления поверхности;
- появится необходимость использования более активных (и коррозийных) флюсов;
- возможно появление перемычек и замыканий;
- вследствие более высокой температуры пайки будет наблюдаться сильное разбрызгивание флюса;
- увеличится время создания качественной пайки (контакта);
- вид паяного контакта будет более тусклым;
- снизится ресурс нормальной работы паяльных головок;
- потребуется изменить стиль работы монтажников.
Итак, возможно появление перемычек и замыканий. Перемычки и замыкания возникают в виде «усов» олова (это микроскопические проростки металла из мест пайки на печатной плате). Эти таинственные проростки и бывают "виноваты" в серьезнейших отказах электроники.
Олово без укрощающего его свинца ведет себя непредсказуемо. Оловянное покрытие без добавок так же, как кадмий и цинк, спонтанно образует кристаллы металла диаметром около 1-5 мкм и менее одной десятой толщины человеческого волоса, которые проталкиваются от основания вверх. Если они растут достаточно близко для того, чтобы прикоснуться к другому токопроводящему объекту, то вызовут короткое замыкание, которое может повредить аппаратуру.
Статья добавлена: 28.05.2021
Категория: Ремонт ПК
Источники уточняющей диагностической информации из адаптеров и внешних устройств ПК.
Весьма достоверным источником уточняющей диагностической информации являются байты состояния, байты уточненного состояния, коды ошибок - информация из регистров ошибок и регистров состояний. Эта диагностическая информация формируется схемами контроля адаптеров внешних устройств и программами BIOS, которые пишутся высококвалифицированными специалистами.
Эта диагностическая информация может быть получена и в результате выполнения специально написанных простых программ тестирования. Коды ошибок, байты состояний, информация в регистрах ошибок и регистрах состояний - формируются аппаратурой контроллеров и являются информацией о конкретных состояниях и ошибках в аппаратуре контроллеров и внешних устройств. Это достоверная опорная информация для поиска ошибок в контроллерах, расположенных на системных платах и во внешних устройствах.
Кроме того, дополнительная уточняющая информация может быть получена и в результате использования специально написанных программ активизации сигналов, с проведением исследований электрической схемы с помощью осциллографа.
Заключительный этап поиска неисправности в устройствах компьютера, как правило, требует исследования электронных схем с помощью осциллографа. Это исследование можно производить в устойчивом состоянии электронных схем устройств и программы после отказа. Но наибольший эффект при исследовании осциллографом можно получить, если с помощью программы активизировать исследуемый процесс. Для получения устойчивого изображения динамических сигналов на экране осциллографа необходимо, чтобы исследуемые в данном процессе сигналы повторялись периодически с одной и той же частотой. То есть необходимо циклически повторять исследуемый процесс, а это в большинстве случаев достаточно просто обеспечивается с помощью «зацикливания» программы, запускающей исследуемый процесс.
Статья добавлена: 27.05.2021
Категория: Ремонт ПК
Магниторезистивные головки (ликбез).
В современных устройствах внешней памяти на жестких магнитных дисках большой емкости запись осуществляется сверхминиатюрными магнитными головками (с зазором), выполненными по микронной полупроводниковой технологии. Такие головки позволяют намагничивать предельно малые домены магнитной поверхности, но запись выполняется за счет энергии тока записи достаточной для этого мощности, а вот при считывании, очень слабые поля доменов, при прохождении под зазором головки дают очень слабый электрический сигнал в обмотке считывания. Поэтому в магнитной записи при повышении плотности записи возникает серьезная проблема - при уменьшении размеров магнитных доменов носителя уменьшается уровень считанного сигнала головки и существует вероятность принять шум за «полезный» сигнал. Для решения этой проблемы необходимо иметь более эффективную головку чтения, которая более достоверно сможет определить наличие сигнала от «слабых» полей доменов.
Известно, что от воздействия на некоторые материалы внешнего магнитного поля его сопротивление изменяется. Этот эффект был использован для создания считывающих головок нового поколения. Магниторезистивные (Magneto-Resistive - MR) головки являются чувствительными детекторами и регистрируют малейшие изменения в зонах намагниченности преобразуя их в электрические сигналы, которые могут быть интерпретированы как данные. При прохождении обычной головки над зоной смены знака, на выходах обмотки считывания формируется импульс напряжения, а при считывании данных с помощью магниторезистивной головки - ее сопротивление оказывается различным при прохождении над участками с разным значением остаточной (постоянной) намагниченности. Это явление и послужило основой для создания фирмой IBM нового типа считывающих головок. Через головку протекает небольшой постоянный измерительный ток, и при изменении сопротивления изменяется и падение напряжения на ней.
Поскольку на основе магниторезистивного эффекта можно построить только считывающее устройство, магниторезистивная головка на самом деле - это две головки, объединенные в одну конструкцию. При этом, записывающая часть, представляет собой обычную индуктивную головку, а считывающая - магниторезистивную.