Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 57 из 59      1<< 54 55 56 57 58 59>> 59

ПРИМЕР МЕТОДИКИ РЕМОНТА ЖЕСТКИХ ДИСКОВ

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

ПРИМЕР МЕТОДИКИ РЕМОНТА ЖЕСТКИХ ДИСКОВ. В данной статье рассматривается реальный случай восстановления жесткого диска. Ремонт осложнялся тем, что клиент просил не потерять при ремонте хранящиеся на диске, ценные для него, данные. Ремонт был успешно завершен, а сам процесс поиска и устранения неисправности оказался связан с использованием типовых методик, утилит и ряда других инструментов для ремонта дисков. Поэтому данный случай, несомненно, будет интересен широкому кругу специалистов-ремонтников по компьютерной технике. Исходные данные для ремонта диска, полученные от клиента При собеседовании с Клиентом были получены следующие сведения: - при подключении жесткого диска Conner CP 30104H в качестве второго устройства (Slave) сработала защита от перегрузки в системном блоке электропитания; - информацию, хранящуюся на диске, необходимо сохранить; - техническое описание и инструкция по эксплуатации на диск отсутствуют.

Функции и атрибуты S.M.A.R.T.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Функции и атрибуты S.M.A.R.T. Технология S.M.A.R.T. - Self-Monitoring, Analysis and Reporting Technology (от англ. "Технология Самодиагностики, Анализа и Отчета") - была разработана для повышения надежности и сохранности данных на жестких дисках. В большинстве случаев, SMART-совместимые устройства позволяют предсказать появление наиболее вероятных ошибок и, тем самым, дают пользователю возможность своевременно сделать резервную копию данных и/или полностью заменить накопитель до выхода его из строя. S.M.A.R.T. представляет собой набор мини-подпрограмм, которые являются частью микрокода накопителя и определяют поддерживаемые диагностические функции, наиболее распространенные среди них: - набор атрибутов, отражающих состояние отдельных параметров накопителя; - внутренние тесты накопителя (self-test); - журналы S.M.A.R.T. (ошибок, общего состояния, дефектных секторов и т.п.). История развития технологии S.M.A.R.T. не так уж и богата версиями и подробностями: - SMART I предусматривал мониторинг основных жизненно важных параметров и запускался только после команды по интерфейсу; - в SMART II появилась возможность фоновой проверки поверхности, которая выполнялась накопителем автоматически во время "холостого хода"; появилась функция журналирования ошибок - в SMART III впервые появилась не только функция обнаружения дефектов поверхности, но и возможность их восстановления "прозрачно" для пользователя и многие другие новшества. Инициаторами и первыми разработчиками основ этой технологии являются Western Digital, Seagate и Quantum. Впоследствии их поддержали такие компании как IBM, Maxtor и Samsung. Hitachi тоже приняла участие в развитии технологии S.M.A.R.T., но уже на стадии разработки SMART II, предложив универсальную методику полной самодиагностики накопителя. В настоящее время производители жестких дисков готовятся принять к использованию новый вариант технологии S.M.A.R.T. - "1024 S.M.A.R.T.", характерной особенностью которого будет заметно больший размер журналов, повсеместное использование мульти-секторных журналов, более точные алгоритмы анализа показаний встроенных в накопитель сенсоров (термодатчики, сенсоры ударов, и т.п.) и многое другое. Вот некоторые из новых функций: - введение алгоритма анализа температурного режима накопителя; - введение ограничения по минимальной и максимальной температуре в рабочем состоянии; - введение счетчика общего количества записанных секторов на протяжении жизненного цикла накопителя; - введение счетчика запусков внутренних алгоритмов восстановления (recovery counters). В новой версии стандарта ввели ряд новых атрибутов, которые позволят контролировать состояние и рабочие характеристики по каждой из головок чтения/записи. В функции технологии S.M.A.R.T. входит постоянное наблюдение за основными характеристиками накопителя, каждая из них получает оценку. Характеристики, наблюдаемые S.M.A.R.T., можно разбить на две группы: - параметры, отражающие процесс естественного старения жёсткого диска (число оборотов шпинделя, число перемещений головок, количество циклов включения-выключения); - текущие параметры накопителя (высота головок над поверхностью диска, число переназначенных секторов, время поиска дорожки и количество ошибок поиска). Эти данные хранятся в шестнадцатеричном виде, называемом «raw value», а потом пересчитываются в «value» - значение, символизирующее надёжность относительно некоторого эталонного значения. Обычно «value» располагается в диапазоне от 0 до 100 (некоторые атрибуты имеют значения от 0 до 200 и от 0 до 253). Высокая оценка говорит об отсутствии изменений данного параметра или медленном его ухудшении. Низкая оценка говорит о возможном скором сбое. Значение, меньшее, чем минимальное, при котором производителем гарантируется безотказная работа накопителя, означает выход узла из строя. Технология SMART позволяет осуществлять: - мониторинг параметров состояния; - сканирование поверхности; - сканирование поверхности с автоматической заменой сомнительных секторов на надёжные. Технология SMART позволяет предсказывать выход устройства из строя в результате механических неисправностей, что составляет около 60 % причин, по которым винчестеры выходят из строя, но предсказать последствия «скачка» напряжения или повреждения накопителя в результате удара S.M.A.R.T. естественно не может. Накопители сами сообщить о своём состоянии, определенном посредством технологии S.M.A.R.T, не могут - для этого существуют специальные программы. Использование технологии SMART невозможно без наличия программного обеспечения (ПО), встроенного в контроллер накопителя, и внешнего ПО, встроенного в хост.

Универсальное ремонтное оборудование - сигнатурные анализаторы.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Универсальное ремонтное оборудование - сигнатурные анализаторы. Для диагностики и ремонта сложных электронных плат и модулей обычно применяют традиционное лабораторное оборудование: мультиметры, тестеры осциллографы, специальные диагностические платы и т.д. Работа с этим оборудованием требует подачи питающего напряжения на дефектные платы и модули, а это небезопасно и часто может привести к выходу из строя исправных узлов модуля. Для работы с этими приборами требуется наличие документации, принципиальных схем, сборочных чертежей, и нужен специалист высокой квалификации. Все это не способствует быстрому и качественному выполнению ремонта и диагностики электронного оборудования. Для решения вышеуказанных проблем существует универсальное ремонтное оборудование - сигнатурный анализатор, способный обеспечить быстрый и качественный ремонт радиоаппаратуры силами сервисного персонала средней квалификации, даже не имея документации. Основной объем оборудования оргтехники и компьютерной техники, обслуживанием и ремонтом которой занимаются ремонтные службы предприятий - импортного производства, и при ее диагностике персонал служб сталкивается с огромным разнообразием импортных компонентов, на которые отсутствуют технические описания и схемы. Эти проблемы усугубляются полным или частичным отсутствием ремонтной документации. Рассматриваемые в данной статье локализаторы неисправностей позволяют быстро и без использования документации и описаний определять неисправности в аналоговых и цифровых электронных платах. Отечественная промышленность в предыдущие годы уже использовала специализированные программируемые стенды для диагностики серийных электронных изделий, а также различные усовершенствованные тестеры и пробники для поиска неисправностей в период их эксплуатации. Но резкое увеличение плотности монтажа и очень быстрая модификация электронных изделий сделали программируемые стенды экономически неэффективными даже в серийном производстве. Из опыта зарубежных производителей тестового оборудования известно, что у них активно используются локализаторы неисправностей на компонентном уровне - сигнатурные анализаторы.

Пассивные профилактические меры для надежной работы компьютерных систем.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Пассивные профилактические меры для надежной работы компьютерных систем. Под пассивной профилактикой подразумевают создание приемлемых для работы компьютера общих внешних условий (температура окружающего воздуха, тепловой удар при включении и выключении системы, пыль, дым, а также вибрация и удары, очень важны электрические воздействия, к которым относятся электростатические разряды, помехи в цепях питания и радиочастотные помехи). В помещении, где установлены компьютеры, не должно быть пыли и табачного дыма. Нельзя ставить компьютер около окна, так как солнечный свет и перепады температуры влияют на него отрицательно. Включать компьютер нужно в надежно заземленные розетки, напряжение в сети должно быть стабильным, без перепадов и помех. Нельзя устанавливать компьютер рядом с радиопередающими устройствами и другими источниками радиоизлучения (мобильные телефоны тоже являются источником помех для ряда схем компьютера). Чтобы компьютер работал надежно, температура в помещении должна быть стабильной. При колебании температуры существенно ускоряются «выползания» микросхем из гнезд, могут потрескаться или отслоиться токопроводящие площадки на печатных платах, разрушиться паяные соединения. При повышенной температуре ускоряется окисление контактов, могут выйти из строя микросхемы и другие электронные компоненты. Колебания температуры сказываются и на стабильности работы жестких дисков, (в некоторых накопителях при разных температурах информация записывается на диск с различными смещениями относительно среднего положения дорожек записи, в результате чего возникают проблемы с последующим считыванием). Для компьютеров обычно указывается допустимый диапазон температур, большинство фирм-изготовителей приводит эти данные в паспорте на изделие (температура эксплуатации и температура хранения), например, для большинства персональных компьютеров температура при эксплуатации (+15 - +32)°С, а при хранении (+10 - +43)°С. В целях сохранности жесткого диска, и записанных на нем данных, необходимо оберегать его от резких перепадов температуры, поэтому прежде чем его включить, дайте ему прогреться до комнатной температуры (на магнитных дисках накопителя может конденсироваться влага, и при его включении накопитель тут же выйдет из строя). После длительного переохлаждения накопитель должен «прогреваться» при комнатной температуре от нескольких часов до суток. Если вы хотите, чтобы ваш компьютер работал долго и безотказно, чтобы свести к минимуму колебания температуры в системе, старайтесь как можно реже его включать и выключать (конечно, надо обязательно учитывать и другие обстоятельства - стоимость электро¬энергии, пожарную безопасность и т.п.). Например, оставленные без присмотра мониторы (из-за коротких замыканий в их схеме), и компьютеры (из-за остановок вентиляторов и перегрева) могут выйти из строя и стать причиной пожара Основной причиной выхода из строя низковольтных полупроводниковых приборов и устройств (каковыми являются многие компоненты компьютера, кроме блока питания и некоторых узлов монитора) в момент их включения кроется не в превышении допустимых токов или напряжений, а в тепловом расширении или сжатии компонентов. Статистические данные и эксперименты показали, что постоянно включенные интегральные микросхемы выходят из строя реже, чем те, на которые напряжение часто подается и выключается. Чаще всего в момент включения выходят из строя блоки питания. Возникающие при включении токовые перегрузки, связанные, например, с разгоном двигателей жестких дисков, значительно превышают токи, которые потребляются от источников питания в стационарном режиме. В течение первых секунд работы блок питания отдает (и, следовательно, рассеивает) большую мощность, особенно тогда, когда одновременно раскручиваются двигатели сразу нескольких накопителей, для которых характерны особенно высокие значения пусковых токов. Это зачастую приводит к перегрузке как входных, так и выходных компонентов блока питания (транзисторов и микросхем). Таким образом, чтобы продлить срок службы компьютера, нужно поддерживать температуру его полупроводниковых компонентов относительно постоянной, и ограничить количество включений и выключений электропитания. Компромиссным и приемлемым обычно считают решение включать компьютеры один раз в день (но если на компьютере работает несколько человек, то обычно каждый из них включает систему, делает свое дело и, уходя, выключает, в такой ситуации компьютеры выходят из строя гораздо чаще).

В чем эффективность применения технологии динамического переключения фаз питания?

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

В чем эффективность применения технологии динамического переключения фаз питания? Когда идея снижения энергопотребления компьютеров овладела разработчиками ПК, и они вспомнили о технологии динамического переключения фаз питания процессора. Возможность переключения фаз питания процессора была заложена в спецификацию Intel VR 11.1 и все PWM-контроллеры, совместимые со спецификацией VR 11.1, поддерживают ее. PWM-контроллеры компании Intersil - например, 6-канальный PWM-контроллер Intersil ISL6336A, PWM-контроллеры компании On Semiconductor - например, 6-канальный PWM-контроллер ADP4000 (контроллеры других компаний применяются значительно реже). Контроллеры и Intersil, и On Semiconductor, совместимые со спецификацией VR 11.1, поддерживают динамическое переключение фаз питания. Разница лишь в том, как производитель материнской платы использует возможности PWM-контроллера. Какова и в чем эффективность применения технологии динамического переключения фаз питания? Например, на системной плате имеется 6-фазный регулятор напряжения питания процессора. Если процессор загружен несильно, а значит, потребляемый им ток невелик, то вполне можно обойтись двумя фазами питания. Потребность в шести фазах возникает при сильной загрузке процессора, когда потребляемый им ток достигает максимального значения. Можно сделать так, чтобы количество задействованных фаз питания соответствовало потребляемому процессором току, то есть чтобы фазы питания динамически переключались в зависимости от загрузки процессора. Любой регулятор напряжения сам потребляет часть преобразуемой им электроэнергии, которая выделяется в виде тепла. Поэтому одной из характеристик преобразователя напряжения является его КПД, или энергоэффективность, то есть отношение передаваемой мощности в нагрузку (в процессор) к потребляемой регулятором мощности, которая складывается из мощности, потребляемой нагрузкой, и мощности, потребляемой самим регулятором. Энергоэффективность регулятора напряжения зависит от текущего значения тока процессора (его загрузки) и количества задействованных фаз питания (рис. 1).

Записи данных о разделах (массив разделов) в GPT.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Записи данных о разделах (массив разделов) в GPT. Массив разделов. Массив разделов начинается непосредственно за блоком заголовка GPT, то есть со второго блока диска (LBA=2). Массив разделов состоит из записей одинакового формата, каждая из которых описывает один раздел диска. Размер записей может меняться, однако на одном диске все записи имеют одинаковую длину, указанную в заголовке GPT и кратную 8. Например, на машине с установленной 64-битной ОС Microsoft Windows, зарезервировано 128 записей данных о разделах, каждая запись длиной 128 байт (т. о. возможно создание 128 разделов на диске). Первые 16 байт определяют GUID типа раздела (например, GUID системного EFI-раздела имеет вид «C12A7328-F81F-11D2-BA4B-00A0C93EC93B»). Следующие 16 байт содержат GUID, уникальный для данного конкретного раздела. Далее записываются данные о начальном и конечном (64-бита) LBA раздела. Остальное место отводится информации об именах и атрибутах разделов.

Новые технологии PCI Express 3.0. Индикаторы.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Новые технологии PCI Express 3.0. Индикаторы. Стандартная пользовательская модель определяет два индикатора: индикатор питания и индикатор внимания. Платформа может обеспечить два индикатора в каждый слот или панель модуля, индикаторы могут быть реализованы на корпусе или модуле, детали реализации зависят от требований форм-фактора "горячего" подключения. Каждый индикатор находится в одном из трех состояний: - включено, - выключено, - мерцание. Системное ПО Hot-Plug обладает исключительным контролем над состоянием индикаторов за счет возможности записи в командный регистр, связанный с индикатором. Порт совместимый с Hot-Plug управляет частотой мерцания индикаторов, рабочим циклом и фазой. Мерцающие индикаторы функционируют на частоте от 1 до 2 Гц с коэффициентом заполнения 50% (± 5%). Мерцающие индикаторы не должны быть синхронизированы и синфазны между портами. Индикаторы должны находиться в непосредственной близости от связанного с ними слота Hot-Plug, если индикаторы реализованы на корпусе, чтобы соединение между индикаторами и слотом Hot-Plug было как можно более свободным. Оба индикатора полностью контролируются системным ПО. Устройство коммутатора или корневого порта никогда не изменяет состояние индикатора при отклике на событие, типа сбоя питания или внезапного открытия защелки MRL, если только системное ПО специально не пошлет такую команду. Исключение предоставляется платформам, которые совместимы с механизмом определения контактной неисправности (типа "залипания") питания. В этом специфическом случае сбоя платформе разрешено "подавить" устройство коммутатора или корневого порта и силой включить индикатор питания (как указание, что плата расширения не может быть извлечена). Во всех случаях внутреннее состояние порта для индикатора питания должно соответствовать со¬стоянию, выбранному программным обеспечением. Обработка системным ПО константных неисправностей является необязательной функциональностью и отдельно не описывается. Поэтому производитель платформы должен гарантировать, что эта дополнительная функциональность стандартной пользовательской модели выполняется дополнительным ПО, описывается в документации платформы или каким-либо другим способом.

Интерфейс SerialVID (Serial Voltage Identification).

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Интерфейс SerialVID (Serial Voltage Identification). Системные платы GIGABYTE еще на базе чипсетов Intel Z77 серии были спроектированы в полном соответствии с требованиями спецификации Intel VRD 12 (Voltage Regulator Down). Ключевой компонент нового VRD-модуля – сертифицированный контроллер компании Intersil. Идентификация и обмен информацией между ЦП и контроллером осуществляется средствами последовательного (табл. 1) интерфейса SerialVID (Serial Voltage Identification).

Причины, типичные проблемы и неисправности в ноутбуках.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Причины, типичные проблемы и неисправности в ноутбуках. Ноутбуки совершенствуются, а пользователи - нет! Причины и типичные проблемы и неисправности остаются, к сожалению, прежними. Итак, представляем вам своего рода «хит-парад» типичных проблем и неисправностей, с которыми владельцы ноутбуков приходят в сервисный центр. На первом месте, причём со значительным отрывом от всех остальных поломок, находится довольно банальная неприятность – залитая жидкостью (чаем, кофе, пивом, коньяком и так далее) клавиатура. Мораль проста – ни в коем случае не ставьте чашку/кружку/рюмку рядом с ноутбуком, иначе рано или поздно кто-нибудь (не обязательно вы), не рассчитав движение, опрокинет некстати подвернувшийся под руку сосуд, и обращения в сервис-центр не избежать. Второе место занимают неисправности клавиатуры (у обратившихся в сервис обычно отваливаются «шапки» клавиш). Это может быть следствием как излишних усилий, прилагаемых пользователем, так и не слишком качественных компонентов ноутбука. Так или иначе, обращайтесь с клавиатурой по возможности аккуратно, это позволит сэкономить время и деньги. На третьем месте – выход из строя блоков питания и повреждения матрицы ноутбуков. Тоже довольно распространённая проблема, обращающихся в сервисный центр. К сожалению, от пользователя здесь мало что зависит – вина практически полностью лежит на производителях блоков питания. Но умудрившиеся разбить матрицу ноутбука (может показаться, что сделать это достаточно сложно), как показывает практика, используют множество ситуаций, в которых повредить матрицу легче лёгкого. Например: положили ручку на клавиатуру и закрыли крышку; уронили, случайно наступили ногой или сели на край стола, а под бумагами оказался ноутбук и т.д.

Подготовка жесткого диска к работе с файловой системой NTFS.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Подготовка жесткого диска к работе с файловой системой NTFS. При форматировании тома под NTFS создаются таблица MFT (Master File Table – главная файловая таблица) и метаданные. Каждый занятый сектор тома NTFS принадлежит файлу. Даже метаданные файловой системы являются частью файла. NTFS рассматривает каждый файл или каталог как набор атрибутов. Том NTFS условно делится на две части (см. рис.1). Первые 12% диска отводятся под так называемую MFT зону - пространство, в которое растет метафайл $MFT (это делается для того, чтобы самый главный, служебный файл (MFT) не фрагментировался при своем росте). Остальные 88% диска представляют собой обычное пространство для хранения файлов. Свободное место диска, однако, включает в себя всё физически свободное место в том числе и незаполненные части MFT-зоны. Самый главный файл на томе NTFS - файл $MFT размещается в MFT-зоне и представляет собой централизованный источник информации о размещении всех остальных файлов диска и самого себя. $MFT поделен на записи фиксированного размера (обычно 1 Кбайт), и каждая запись соответствует какому либо файлу (в обобщенном смысле) или хранит сам файл (небольшой). NTFS включает несколько системных файлов (метафайлов), которые скрыты от просмотра на томе. Системные файлы используются только файловой системой для хранения метаданных и поддержания работы файловой системы. Системные файлы записываются на том утилитой Format. Метаданные представляют собой файлы, которые NTFS использует для реализации структуры файловой системы. NTFS резервирует для метаданных первые 16 записей в $MFT. Эти первые 16 файлов носят служебный характер недоступные операционной системе - называются метафайлами (см. табл. 1). Остальные записи файла $MFT описывают файлы и каталоги. Самый первый метафайл - сам $MFT. Эти первые 16 записей $MFT - единственная часть диска, имеющая фиксированное положение. Вторая копия этих же 16 записей, для надежности хранится в центральной зоне диска в виде файла $MFTMirr.

Мониторинг компьютерного оборудованияи ACPI

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

Мониторинг компьютерного оборудованияи ACPI ACPI расшифровывается как Advanced Configuration and Power Interface - расширенный интерфейс конфигурирования компьютера и управления питанием. ACPI - та основа, вокруг которого построен любой современный компьютер на аппаратном уровне. В системе с ACPI именно этот свод стандартов и правил используется для конфигурирования и работы аппаратных средств. Например, для назначения прерываний и ресурсов устройствам на современных шинах, для получения информации о работе устройств, для работы дополнительных "энергосберегающих" кнопок и датчиков. Современные компьютеры снабжаются дополнительным оборудованием, которое позволяет повысить надежность системы за счет постоянного оперативного контроля за состоянием ее наиболее важных компонентов. Процессоры шестого поколения, например, оборудованы термодатчиком (термодиод на кристалле ядра), который связан с программируемым устройством контроля температуры. Это устройство имеет аналого-цифровой преобразователь, калибруемый по термодиоду конкретного процессора на этапе тестирования картриджа. Константа настройки термометра заносится в PIROM. Устройство термоконтроля программируется - задается частота преобразований и пороги температуры, по достижении которых вырабатывается сигнал прерывания. Для взаимодействия с PIROM, Scratch EEPROM и устройством термоконтроля процессор имеет дополнительную последовательную шину SMBus (System Management Bus), основанную на интерфейсе I2C.

ACPI, состояния ПК.

Статья добавлена: 28.08.2017 Категория: Ремонт ПК

ACPI, состояния ПК. С точки зрения ACPI, вообще имеется четыре состояния ПК: - G0 - обычное, рабочее состояние; - G1 - suspend, спящий режим; - G2-soft-off, режим когда питание отключено, но блок питания находится под напряжением, и ПК готов включиться в любой момент; - G3 - mechanical off - питание отключено полностью. По инициативе OnNow расширили состояние G1. Вместо простого засыпания ввели четыре специальных режима: - S1: (standby 1) останавливаются тактовые генераторы CPU и всей системы, но при этом состояние памяти остается неизменным. Выход из S1 осуществляется мгновенно. - S2: (standby 2) также останавливаются тактовые генераторы CPU и всей системы, но к тому же отключается питание кеша и CPU, а данные, хранившиеся там, сбрасываются в основную память. Включение также происходит достаточно быстро. - S3: (suspend-to-memory) по замыслу, именно этот режим должен был быть в OnNow, но сразу по воле разработчиков так не получилось. Должны были обесточиваться все компоненты системы, кроме памяти, в которой сохраняются необходимые данные о состоянии CPU и кеша. Включение с восстановлением предыдущего состояния ПК действительно происходит Now, то есть практически сразу. - S4: (suspend-to-disk) это то, что было реализовано в каком-то виде сразу. Все компоненты системы обесточиваются, а данные о состоянии процессора и содержимое кэша и памяти записываются в специально отведенное место на жестком диске. При этом пробуждение может занимать значительное время. Впоследствии были предложены и некоторые другие специальные режимы, например, S5 (программное выключение ПК - soft off).

Стр. 57 из 59      1<< 54 55 56 57 58 59>> 59

Лицензия