Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 1 из 213      1 2 3 4>> 213

Фотобарабан, фоторецептор, светочувствительный барабан (ликбез).

Статья добавлена: 14.10.2024 Категория: Статьи

Фотобарабан, фоторецептор, светочувствительный барабан (ликбез). Основой механизма печатающего устройства является фотобарабан представляющий собой алюминиевый цилиндр с нанесенным на него светочувствительным слоем, в котором при попадании фотонов света формируется скрытое электростатическое поле, представляющее собой точную проекцию оригинала, первоначально отразившего этот свет. Фотобарабан обычно называют еще и фоторецептором или светочувствительным барабаном (СБ). Фотобарабан очень чувствителен к свету. Солнечный свет может навсегда вывести барабан из строя. Если барабан извлечен из машины, он должен быть укрыт от света газетами или еще чем-то, чтобы обеспечить максимальное его затемнение. Слегка засвеченный барабан может восстановить свои свойства после «отдыха» в темноте, но обычно все равно остаются дефекты. Имеется несколько типов фоторецепторов. Наиболее популярен органический фоторецептор. Слово «органический» говорит о том, что такие рецепторы можно выбрасывать после выработки их ресурса в обычный мусор. В отдельных моделях копировальных аппаратов встречаются некоторые модификации подобной конструкции, например, барабан может быть заменен на светочувствительную мастер-пленку, которая тоже представляет собой фоточувствительный слой, но только нанесенный не на алюминиевый барабан, а на гибкую синтетическую основу. Ранее использовались селеновые или кадмий-сульфидные барабаны, которые нужно было возвращать производителю для правильной утилизации. Некоторые, еще более устаревшие машины использовали розовый фотопроводник - оксид цинка с очень небольшим сроком службы. Его хватало всего на 500...1000 копий. Большинство органических или селеновых барабанов выдерживают производство 30000...200000 копий. Также используется материал, называемый аморфный силикон, которого хватает примерно на 1000000 копий. Обычно на практике приходится работать только с органическими и селеновыми барабанами. Органические барабаны могут иметь любой цвет. Селеновые барабаны зеркальные. Кадмий-сульфидные имеют рыжевато-коричневый цвет. Барабаны недолговечны, всегда имеют известное время жизни и дорого стоят. Трение бумаги, чистящее лезвие, пальцы отделения приводят к их износу. Если что-то сделано неправильно, барабан выйдет из строя раньше, и это будет стоить денег. Барабан можно отполировать пастой, используемой для полировки металла. Это поможет убрать небольшие царапины, но сократит общее время жизни барабана. Поверхность барабана очень гладкая. Любые пятна, царапины или зазубрины будут видны на копии. Барабан электрически заземляется на корпус машины, обычно через его металлическую ось. Основные характеристики фотопроводников позволяют оценить возможности, которые влияют на процесс воспроизведения изображения устройствами печати и копирами. Эти базовые сведения необходимо знать каждому специалисту, который связан с обслуживанием, диагностикой и ремонтом такого оборудования. Указанные характеристики помогут также правильно осуществить выбор принтера (или копира) с учетом требований к качеству печати в Вашей организации или на предприятии. Основы работы любого копировального аппарата и лазерного принтера лежит процесс сухой ксерографии. В свою очередь, он базируется на методе создания изображения называемом сухой электрографией. ... ... ...

Модульный дизайн (графическое ядро GT4, GT4e).

Статья добавлена: 10.10.2024 Категория: Статьи

Модульный дизайн (графическое ядро GT4, GT4e). Графическое ядро GT4, GT4e (Iris Pro Graphics 580) появилось в процессорах Broadwell и Skylake. В графике процессоров Skylake были сделаны и существенные изменения и в части поддерживаемых графических API. В GPU этих новых процессоров уже была совместимость с DirectX 12, OpenGL 4.4 и OpenCL 2.0, а позднее, по мере совершенствования графического драйвера, к этому списку добавились и следующие версии OpenCL 2.x и OpenGL 5.x, а также поддержка низкоуровневого фреймворка Vulkan. Кроме того, новых GPU была реализована и полноценная когерентность памяти с процессором, что сделало Skylake самым настоящим APU – его графическое и вычислительные ядра могут одновременно работать над одной и той же задачей, используя общие данные. Графическое ядро GT4e содержало: 72 исполнительных устройства, 128 Мбайт eDRAM, производительность до 1152 ГФлопс на частоте 1 ГГц. Вычислительная производительность Iris Pro Graphics 580 составляет более 1,1 Тфлопс (триллиона операций с плавающей точкой в секунду) в зависимости от тактовой частоты. Графический процессор Iris Pro Graphics 580 имеет обновлённый мультимедийный движок, который поддерживает аппаратное декодирование и кодирование Ultra HD-видео с использованием кодеков HEVC и VP9. Современные графические ядра, применяемые в процессорах Broadwell и Skylake и относящиеся к классам Iris и Iris Pro предлагают вполне достаточную для массовых игровых систем производительность. Конечно, здесь имеется в первую очередь способность интеловской интегрированной графики нормально работать в казуальных и несложных в графическом плане сетевых играх. За последние несколько лет производительность интегрированной графики выросла в 30 раз. Новые графические ядра уже были способны предложить весьма впечатляющую теоретическую производительность. GPU, реализованный в Skylake, как и его предшественники, тоже сохранил традиционный модульный дизайн. Таким образом, мы вновь имеем дело с целым семейством решений разного класса: ... ... ...

История появления свободного программного обеспечения.

Статья добавлена: 08.10.2024 Категория: Статьи

История появления свободного программного обеспечения. Ричард Столлман, основатель движения свободного программного обеспечения (ПО), в поисках единомышленников создал некоммерческую организацию «Фонд свободного программного обеспечения». Своей основной целью Фонд ставил сохранение программного обеспечения, процесс разработки которого всегда будет гарантированно открытым, а исходные тексты всегда доступны. Более масштабной целью Фонда была разработка операционной системы, целиком состоящей из открыто разрабатываемого программного обеспечения. Декларируя такую цель, Столлман, фактически, хотел вернуть представлявшееся ему идеальным состояние. Операционная система, разрабатываемая в рамках Фонда, должна была стать совместимой с операционной системой UNIX. К началу 1980-х UNIX уже очень широко использовался, в том числе и в академической среде. Для этой операционной системы существовало много программ, свободно распространявшихся в научном сообществе, поэтому хотелось, чтобы эти программы работали и в новой  свободной операционной системе. Эта будущая операционная система получила название GNU. Столлман явно сформулировал критерии свободного программного обеспечения. Эти критерии оговаривают те права, которые авторы свободных программ передают любому пользователю: - программу можно свободно использовать с любой целью («нулевая свобода»); - можно изучать, как программа работает и адаптировать её для своих целей («первая свобода») - условием этого является доступность исходного текста программы; - можно свободно распространять копии программы  в помощь товарищу («вторая свобода»); - программу можно свободно улучшать и публиковать свою улучшенную версию — с тем, чтобы принести пользу всему сообществу («третья свобода»). Условием этой третьей свободы является доступность исходного текста программы и возможность внесения в них модификаций и исправлений. ... ... ...

История развития и особенности накопителей SSD (ликбез).

Статья добавлена: 07.10.2024 Категория: Статьи

История развития и особенности накопителей SSD (ликбез). Cокращение SSD (Solid State Drive или Solid State Disk) обозначает твердотельный накопитель - энергонезависимое, перезаписываемое запоминающее устройство без движущихся механических частей с использованием флэш-памяти. Падение SSD не должно привести к порче данных, если только точки пайки выдержат удар, а накопитель не будет физически повреждён. Кроме того, SSD не так восприимчивы к экстремальным температурам, а последнее поколение продуктов даёт намного меньшее энергопотребление по сравнению с обычными жёсткими дисками. Производительность по-прежнему является основной причиной выбора SSD (SSD часто оказываются существенно быстрее жёстких дисков). Накопители SSD полностью эмулируют работу жёсткого диска. Преимущества SSD дисков всем хорошо известны: высокая механическая надёжность, отсутствие движущихся частей, высокая скорость чтения/записи, низкий вес, меньшее энергопотребление. У SSD дисков сравнительно небольшой емкости отличий от USB Flash не так уж и много: по сути дела, SSD накопитель - это та же большая флэшка. Но в отличие от флэшек, в SSD дополнительно используются микросхемы DDR DRAM кеш-памяти. Это связано со спецификой работы и возросшей в несколько раз скоростью обмена данными между контроллером и интерфейсом, например, SATA. Четвертое поколение PCIe SSD (поколение дисков серии Z-Drive R2) было построено на основе новых оригинальных решений, оно отличается повышенной производительностью и универсальностью благодаря применению оптимизированных NAND модулей. Диски Z-Drive R2 представляют собой комплексное решение, которое обеспечивает исключительно высокую производительность при работе с множеством приложений и демонстрирует лучшие характеристики процессора ввода/вывода и высокую пропускную способность. Кроме того, это были единственные самозагружаемые PCIe SSD, которые обеспечиваются выездным сервисным обслуживанием, и благодаря инновационной конструкции со сменными модулями позволяют с минимальными затратами производить модернизацию и увеличивать емкость, что дает беспрецедентные возможности разработчикам архитектуры памяти (вместо постоянных NAND модулей с поверхностным монтажом в R2 используются сменные модули). Диски Z-Drive R2 не только более производительные и надежные, чем обычные накопительные устройства, они также значительно сокращают затраты на обслуживание и общие расходы владения. Кроме того, OCZ предоставляет производителям оборудования уникальные возможности для индивидуальных заказов, если требуется специальная аппаратура или встроенные программы. Диски Z-Drive R2 оптимально подходят для использования в сетях хранения данных, рабочих станциях и серверах. Скорость передачи данных Z-Drive R2 достигает 1,4 Гбайт/с, при этом надежность и долговечность выше, чем у механических жестких дисков. В настоящее время SSD накопители практически догнали традиционные жесткие диски в плане емкости. ... ... ...

Основные схемы адресации узлов компьютерной сети (ликбез).

Статья добавлена: 25.09.2024 Категория: Статьи

Основные схемы адресации узлов компьютерной сети (ликбез). С появилением сложных глобальных сетей компьютеров, в которых можно было обмениваться данными в автоматическом режиме, были реализованы службы обмена файлами, синхронизации баз данных, электронной почты, распечатки документов на “чужом” принтере и другие, ставшие теперь традиционными, сетевые службы. Одним из главных показателей качества сетевых служб является их удобство (ее прозрачность). Для обеспечения прозрачности большое значение имеет способ адресации, или, как говорят, способ именования разделяемых сетевых ресурсов. Таким образом, одной из важнейших проблем, которую нужно решать при объединении от трех и более компьютеров в сеть, является проблема их адресации. В современных компьютерных сетях широко используются следующие схемы адресации узлов сети: ... ... ...

Причины отказов в электронных узлах на печатных платах (ликбез).

Статья добавлена: 23.09.2024 Категория: Статьи

Причины отказов в электронных узлах на печатных платах (ликбез). Отрицательное воздействие внешней среды непосредственно сказывается на показтелях надежности печатных узлов и сборок выполненных по современным технологиям. При экстремальных условиях эксплуатации с целью увеличения срока службы и безотказности оборудования на печатные узлы принято наносить защитные покрытия. В зависимости от условий эксплуатации это могут быть акриловые или полиуретановые лаки, силиконовые материалы, эпаоксидные смолы. Однако далеко не всегда перед нанесением влагозащитного покрытия должное внимание уделяется обеспечению чистоты поверхности печатного узла. Почему так важно обеспечить отсутствие загрязнений на поверхности печатного узла перед нанесением влагозащитного покрытия и как проявляется плохое качество отмывки в процессе эксплуатации? При нанесении влагозащитного покрытия необходимо обеспечить хорошую адгезию покрытия к печатному узлу, так как это позволит гарантировать высокую надежность и долговечность влагозащитного покрытия. Канифольные остатки флюса и активаторы в ряде случаев оказываются несовместимыми с применяемыми влагозащитными материалами и могут привести к значительному уменьшению адгезии. В результате происходит отшелушивание или отслаивание покрытия, ухудшение влагозащитных характеристик. Поэтому для обеспечения хорошей адгезии влагозащитного покрытия высокая чистота печатного узла является необходимым условием. Современные влагозащитные покрытия являются эффективным препятствием для сконденсировавшейся влаги и молекул загрязнений, но, в то же время, они «запирают» загрязнения, имеющиеся на поверхности печатного узла. Это означает, что не отмытые остатки флюса, а также другие загрязнения после нанесения влагозащитного покрытия остаются на поверхности печатного узла и сохраняют свои свойства на протяжении всего периода хранения и использования изделия. При нормальных условиях эксплуатации данное явление не представляет серьезной опасности. Но при эксплуатации в условиях повышенной влажности, воздействия солевого тумана, перепадов температур, запертые внутри загрязнения становятся существенной угрозой надежности изделия. Разрушительные механизмы на поверхности не отмытого печатного узла под влагозащитным покрытием могут быть спровоцированы различными факторами воздействия окружающей среды, а результатом таких процессов, как правило, являются следующие дефекты: - отслаивание влагозащитного покрытия; - токи утечки между проводниками; - уменьшение поверхностного сопротивления изоляции; - коррозионное разрушение печатного узла; - рост дендритов между проводниками, приводящий к короткому замыканию. Эксплуатация печатного узла с загрязнениями под влагозащитным покрытием в жестких климатических условиях крайне нежелательна, так как может привести к преждевременному выходу устройства из строя. ... ... ...

Китайская альтернатива процессорам Intel и AMD.

Статья добавлена: 20.09.2024 Категория: Статьи

Китайская альтернатива процессорам Intel и AMD. В условиях санкций на поставку процессоров Intel и AMD в Россию, китайская альтернатива имеет большие перспективы, например, российский производитель средств вычислительной техники Группа Компаний ТОНК, представил два новых устройства - ноутбук и мини компьютер на китайском x86 процессоре. Самое интересное в них - это конечно же x86-совместимый процессор Zhaoxin KX-6640MA. Этот процессор создан в Китае компанией Shanghai Zhaoxin, которой благодаря сотрудничеству с VIA удалось получить разрешение на архитектуру x86. Кроме этого процессора Shanghai Zhaoxin выпускает целую серию CPU KX-6000, которые представляют собой процессоры SoC общего назначения последнего поколения, независимо разработанные Zhaoxin. Это первый процессорный чип в Китае, использующий 16-нм техпроцесс CMOS. Он использует технологию упаковки HFCBGA с размером 35 мм x 35 мм. Чип объединяет 4/8-ядерные процессоры, встроенный двухканальный контроллер памяти DDR4, механизм ускорения 3D-графики, декодер потокового мультимедиа высокой четкости и общие периферийные интерфейсы, такие как PCIe 3.0, SATA и USB. Ядро ЦП Kaixian серии KX-6000 спроектировано с использованием суперскалярной, многопроцессорной архитектуры, совместимо с новейшим набором инструкций x86, может поддерживать 64-разрядные системы и технологию аппаратной виртуализации ЦП. В то же время процессор поддерживает национальный алгоритм шифрования SM3/SM4, который может обеспечить аппаратную защиту шифрования данных. Особенности серии KX-6000: 16-нм техпроцесс; процессор 8C/8T с тактовой частотой до 3,0 ГГц, кэш-память 8 МБ, поддержка двухканальной памяти DDR4, до 64 ГБ, встроенная видеографическая система, поддержка выхода DP/HDMI/VGA, разрешение до 4K; до 16 интерфейсов PCIe 3.0, 2 порта USB 3.1, 4 порта USB 2.0, 2 интерфейса SATA 3.2; cовместимость с 32/64-битными инструкциями x86, инструкциями расширения SSE4.2/AVX, ускоренными инструкциями SM3 и SM4; поддержка процессором технологии виртуализации ввода-вывода. Компания Zhaoxin создает x86- и x86-64-совместимые процессоры, в основном для китайского рынка: задачей предприятия является снижение зависимости Китайской Народной Республики от иностранных технологий. Система на чипе KX-6000 (также называемая ZX-E), была продемонстрирована еще в сентябре 2018 года. Архитектура, являющаяся развитием архитектуры ZX-D, получила название Lujiazui и была официально запущена в 2019 году. В июне 2019 года сообщалось, что KX-6000 построен по 16-нм техпроцессу TSMC. Чип имеет совместимый с DirectX 11.1 iGPU. В 2022 году Zhaoxin добавила поддержку компилятора для ZX-E в библиотеку компиляторов GNU. Количество использующих процессоры серии KX-6000 вендоров постоянно растет, а системы на них успешно заменяют аналоги на Intel и AMD не только в настольных ПК или серверах, но и в тонких клиентах, электронных досках и в других устройствах. Преемник KX-6000, серия процессоров ZX-F или KX-7000, планировалась к выпуску в 2021 году по 7-нм техпроцессу с поддержкой DDR5 (процессор KX-7000 был выпущен осенью 2021 года). Гибридный процессор (со встроенной графикой, APU) KX-6000G 2022 года (использует встроенный графический процессор ZX C1080, дизайн чипа очень похож на APU AMD Ryzen для настольных ПК) показал скорость на уровне видеокарты NVIDIA 2012 года (GT 630). Целью серии ZX-F было достижение паритета производительности с процессорами Ryzen серии 2018 года (то есть микроархитектурой AMD Zen+, предшественницей AMD Zen 2). Процессоры Zhaoxin в основном использовались в ноутбуках, произведённых в Китае, поставки ноутбуков и мини-компьютеров на 4-ядерном процессоре X-86KX-6640MA (встроенная видеоподсистема C-960) начались в I квартале 2023 г.

Причины дефектов в работе модулей памяти (их контакты).

Статья добавлена: 18.09.2024 Категория: Статьи

Причины дефектов в работе модулей памяти (их контакты). Многие просто не понимают, насколько важны характеристики электрических контактов модулей памяти, установленных в компьютерной системе. Контакты на модулях памяти компьютеров могут быть позолоченными или же покрытыми оловом. Для получения наиболее стабильной системы следует устанавливать модули памяти с позолоченными контактами в разъемы с позолоченными контактами, а модули памяти с оловянными контактами — в разъемы с оловянными контактами. Обычно пользователи считают, что в любой ситуации предпочтительнее позолоченные контакты, однако на самом деле это не так. Если установить модули памяти с позолоченными контактами в разъемы с оловянными контактами или наоборот, то через некоторое время могут появиться дефекты в работе памяти. Ошибки возникают приблизительно через 6–12 месяцев после установки. С подобными проблемами в работе компьютерных систем, обслуживающий персонал часто сталкивается. Например, фирма обновила свой парк компьютеров, а через год в работе памяти всех новых компьютеров начали появляться ошибки. Проблема была связана с несоответствием металла, используемого в покрытии контактов модулей памяти и разъемов системной платы (модули памяти были с позолоченными контактами, а разъемы - с оловянными). Вследствие взаимодействия золотых контактов с контактами из другого металла возникает так называемая фреттинг коррозия. При фреттинг коррозии оксид олова проникает в более твердую поверхность золота, что приводит к повышению сопротивления. Это всегда происходит при контакте золота и олова, независимо от того, какова толщина золотого покрытия. В результате фреттинг коррозии через определенное время (это зависит еще и от окружающей среды) сопротивление в точке контакта увеличивается, что влечет за собой ошибки в работе памяти. ... ... ...

Методы повышения эффективности обучения.

Статья добавлена: 17.09.2024 Категория: Статьи

Методы повышения эффективности обучения. Специалисты, занимающиеся проблемами повышения эффективности обучения, на основании многочисленных опытов и исследований утверждают, что в человеческом мозгу 30% занимают нейроны, отвечающие за зрение, 8% нейронов обеспечивают тактильное восприятие, и только 3% отвечают за слух – это отразилось в поговорке: «Лучше один раз увидеть, чем сто раз услышать». Зрительные образы помогают людям общаться, объяснять, понимать, воспринимать и запоминать информацию. По мнению специалистов человек запоминает 20% услышанного, 30% увиденного и более 50% того, что он видит и слышит одновременно. До сих пор в учебных заведениях используется метод передачи информации, путем чтения лекции по изучаемому предмету, причем преподаватели требуют от слушателей записывания конспекта лекции и достаточно «жестко» контролируют качество и содержание конспекта. Многие студенты возражают против этого метода обучения, считают ведение конспекта «пустой тратой времени и сил» и предлагают выдавать готовый конспект лекций отпечатанный типографским способом. Но если рассмотреть эту проблему с учетом достоверных данных полученных в результате длительных научных исследований, то оказывается, что мы забываем 90% того, что слышим, 50% того, что видим, и только 10% того, что делаем. Поэтому, изучая предмет, очень полезно вести записи, кроме того, необходимость ведения записей конспекта, заставляет внимательно слушать лектора, следить за его мыслью, оперативно осмысливать полученную информацию, формулировать ее в краткой форме и аккуратно записывать на бумагу. Таким образом, на лекционных занятиях, записывая, мы и слышим, и видим, и делаем - то есть лучше запоминаем! ... ... ...

Последовательность действий по восстановлению работоспособности компьютерной техники (ликбез).

Статья добавлена: 12.09.2024 Категория: Статьи

Последовательность действий по восстановлению работоспособности компьютерной техники (ликбез). Первым этапом действий по восстановлению работоспособности любого устройства является получение информации о ремонтируемом объекте с фиксацией исходного состояния и дальнейшее планирование работ. Зафиксируйте исходную ситуацию (осмотрите внимательно, например, системную плату, зафиксируйте внешние повреждения, расположение перемычек и джамперов, микропереключателей, кабелей, установленные на плате блоки, установки CMOS-памяти, звуковые сообщения POST, сообщения выдаваемые на экран монитора и т. д.). Не позволяйте себе поспешных, непродуманных действий. Не зная причины неисправности, не вносите изменения наугад в надежде на то, что системная плата после этого вдруг восстановит работоспособность. Только очень осторожными действиями по детально продуманному плану можно обнаружить неисправный элемент и заменить его. Никогда не вносите двух и более изменений одновременно, так как потом будет практически невозможно определить источник неисправности. Ведите протокол своих действий и запись результатов поиска по каждой версии (в произвольной удобной для Вас форме). Иногда только внимательный анализ записей позволяет выйти на неисправность или на новую продуктивную версию поиска, то есть определить, в каком направлении двигаться дальше. Для успешного проведения ремонтно-восстановительных работ большое значение имеет правильно организованное рабочее место. ... ... ...

Адаптивные настройки определяют конкретные возможности каждого диска (ликбез).

Статья добавлена: 10.09.2024 Категория: Статьи

Адаптивные настройки определяют конкретные возможности каждого диска (ликбез). У разных моделей винчестеров совместимость плат электроники сильно неодинакова, некоторые требуют (при замене) совпадения всех цифр в номере модели, некоторые соглашаются работать только с «родственным» контроллером. А некоторые могут не работать даже при полном совпадении всех букв и цифр и тогда приходится перебирать одного донора за другим в надежде найти подходящий. Теперь поиски доноров для замены неисправной платы электроники диска серьезно осложняются и индивидуальными настройками диска, которые характеризуются адаптивами. Нашествие адаптивов началось сравнительно недавно. До этого индивидуальные настройки диска сводились к высокоуровневым наслоениям, никак не препятствующим чтению информации на физическом уровне и перестановка плат могла привести к невозможности работы с диском средством операционной системы, но данные всегда было можно прочитать посекторно стандартными программами BIOS (INT 13/02) или, на худой конец, на уровне физических адресов в технологическом режиме. Но плотность информации неуклонно росла и нормативы допусков ужесточались, а, значит, усложнялся и удорожался производственный цикл. В промышленных условиях стало невозможно изготовить два абсолютно одинаковых жестких диска. В характеристиках аналоговых элементов (катушек, резисторов, конденсаторов) неизбежно возникает разброс, следствием которого становится рассогласование коммутатора/предусилителя. Но с этим еще как-то можно бороться. Сложнее справится с неоднородностью магнитного покрытия, влекущего непостоянность параметров сигнала головки в зависимости от угла поворота позиционера. Таким образом, производитель должен был: - либо уменьшить плотность информации до той степени, при которой рассогласованиями можно пренебречь (но в этом случае для достижения той же емкости придется устанавливать в диск больше пластин, что удорожает конструкцию и вызывает свои проблемы), - либо улучшить качество производства (но это настолько нереально, что при современном уровне развития науки, экономики и техники даже не обсуждается), - либо калибровать каждый жесткий диск индивидуально, записывая на него так называемые адаптивные настройки (вот по этому пути производители и пошли). ... ... ...

Параметры источника питания обеспечивающие надежную работу компьютера (ликбез).

Статья добавлена: 03.09.2024 Категория: Статьи

Параметры источника питания обеспечивающие надежную работу компьютера (ликбез). Требования, предъявляемые к высококачественным устройствам, очень жесткие и все блоки питания им должны соответствовать. При замене блока питания компьютера (или покупке) необходимо обращать внимание на ряд важных для надежной работы системы параметров источника питания: 1. Диапазон изменения входного напряжения (рабочий диапазон), при котором может работать источник питания (для напряжения 110 В диапазон изменения входного напряжения обычно от 95 до 140 В; для 220 В - от 180 до 270 В). 2. Среднее время наработки на отказ, или среднее время безотказной работы, или среднее время работы до первого отказа (параметр MTBF (Mean Time Between Failures) либо MTTF (Mean Time To Failure)). Этот расчетный параметр указывают в часах, в течение этого времени ожидается, что источник питания будет функционировать нормально (например, 100 тыс. часов или более). Фактически изготовители применяют ранее разработанные стандарты, чтобы вычислить вероятность отказов отдельных компонентов источника питания. При вычислении среднего времени безотказной работы для источников питания часто используются данные о нагрузке блока питания и температуре среды, в которой выполнялись испытания. 3. Допустимый пиковый ток включения, обеспечиваемое источником питания в момент его включения (выражается в амперах (А)). 4. Время удержания выходного напряжения в пределах точно установленных диапазонов напряжений после отключения входного напряжения (в миллисекундах). Для современных блоков питания обычно 15-25 мс. ... ... ...

Стр. 1 из 213      1 2 3 4>> 213

Лицензия