Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Микросхема FSP3528 (ШИМ-контроллер).

Микросхема FSP3528 (ШИМ-контроллер).

С микросхемой FSP3528 приходилось встречаться в следующих моделях системных блоков питания:

- FSP ATX-300GTF;

- FSP A300F-C; -FSPATX-350PNR;

- FSP ATX-300PNR;

- FSP ATX-400PNR;

- FSP ATX-450PNR;

- ComponentPro ATX-300GU.

Но так как выпуск микросхем имеет смысл только при массовых количествах, то нужно быть готовым к тому, что она может встретиться и в других моделях блоков питания фирмы FSP. Прямых аналогов этой микросхемы пока не приходилось встречать, поэтому в случае ее отказа, замену необходимо осуществлять на точно такую же микросхему. Однако в розничной торговой сети приобрести FSP3528 не представляется возможным, поэтому найти ее можно лишь в системных блоках питания FSP, отбракованных по каким-либо другим соображениям.

Микросхема FSP3528 выпускается в 20-контактном DIP-корпусе (рис 1). Назначение контактов микросхемы описывается в таблице 1, а на рис.2 приводится ее функциональная схема. В таблице 1 для каждого вывода микросхемы указано напряжение, которое должно быть на контакте при типовом включении микросхемы. А типовым применением микросхемы FSP3528 является использование ее в составе субмодуля управления блоком питания персонального компьютера.

Микросхема FSP3528 является ШИМ-контроллером, разработанным специально для управления двухтактным импульсным преобразователем системного блока питания персонального компьютера.

Рис. 1. Цоколевка микросхемы FSP3528.

Таблица 1 

N

Сигнал

Bx/Bых

Описание

1

Vcc

Вход

Напряжение питания +5В.

2

COMP

Выход

Выход усилителя ошибки. Внутри микросхемы контакт соединен с неинвертирующим входом ШИМ-компаратора. На этом выводе формируется напряжение, являющееся разностью входных напряжений усилителя ошибки Е/А+ и Е/А- (конт.З и конт.4). Во время нормальной работы микросхемы, на контакте присутствует напряжение около 2.4В.

3

E/A-

Вход

Инвертирующий вход усилителя ошибки. Внутри микросхемы этот вход смещен на величину 1.25В. Опорное напряжение величиной 1.25В формируется внутренним источником. Во время нормальной работы микросхемы, на контакте должно присутствовать напряжение 1.23В.

4

E/A+

Вход

Не инвертирующий вход усилителя ошибки. Этот вход можно использовать для контроля выходных напряжений блока питания, т.е. этот контакт можно считать входом сигнала обратной связи. В реальных схемах, на этот контакт подается сигнал обратной связи, получаемый суммированием всех выходных напряжений блока питания (+3.3V/+5V/+12V). Во время нормальной работы микросхемы, на контакте должно присутствовать напряжение 1.24В.

5

REM

 

Контакт управления задержкой сигнала ON/OFF (сигнала управления включением блока питания). К этому выводу подключается времязадающий конденсатор. Если конденсатор имеет емкость 0.1 мкФ, то задержка при включении (Топ) составляет около 8 мс (за это время конденсатор заряжается до уровня 1.8В), а задержка при выключении (Toff) составляет около 24 мс (за это время напряжение на конденсаторе при его разряде уменьшается до 0.6В). Во время нормальной работы микросхемы, на этом контакте должно присутствовать напряжение около +5В.

6

REM

Вход

Вход сигнала включения/выключения блока питания. В спецификации на разъемы блоков питания АТХ этот сигнал обозначается, как PS-ON. Сигнал REM является сигналом TTL и сравнивается внутренним компаратором с опорным уровнем 1.4В. Если сигнал REM становится ниже 1.4В микросхема ШИМ запускается и блок питания начинает работать. Если же сигнал REM установлен в высокий уровень (более 1.4В), то микросхема отключается, а соответственно отключается и блок питания. На этом контакте напряжение может достигать максимального значения 5.25 В, хотя типовым значением является 4.6В. Во время работы на этом контакте должно наблюдаться напряжение, величиной около 0.2В.

7

RT

-

Частотозадающий резистор внутреннего генератора. При работе, на контакте присутствует напряжение, величиной около 1.25В.

8

CT

-

Частотозадающий конденсатор внутреннего генератора. Во время работы на контакте должно наблюдаться пилообразное напряжение.

9

DET

Вход

Вход детектора превышения напряжения. Сигнал этого контакта сравнивается внутренним компаратором с внутренним опорным напряжением. Этот вход может использоваться для контроля питающего напряжения микросхемы, для контроля ее опорного напряжения, а также для организации любой другой защиты. При типовом использовании, на этом контакте во время нормальной работы микросхемы должно присутствовать напряжение, величиной примерно 2.5В.

10

TPG

 

Контакт управления задержкой формирования сигнала PG (Power Good). К этому выводу подключается времязадающий конденсатор. Конденсатор емкостью 2.2 мкФ обеспечивает временную задержку 250 мс. Опорными напряжениями для этого времязадающего конденсатора являются 1.8В (при заряде) и 0.6В (при разряде). Т.е. при включении блока питания, сигнал PG устанавливается в высокий уровень в момент, когда на этом времязадающем конденсаторе напряжение достигает величины 1.8В. А при выключении блока питания, сигнал PG устанавливается в низкий уровень в момент, когда конденсатор разрядится до уровня 0.6В. Типовое напряжение на этом выводе равно +5В.

11

PG

Выход

Сигнал Power Good - питание в норме. Высокий уровень сигнала означает, что все выходные напряжения блока питания соответствуют номинальным значениям, и блок питания работает в штатном режиме. Низкий уровень сигнала означает неисправность блока питания. Состояние этого сигнала при нормальной работе блока питания - это +5В.

12

VREF

Выход

Высокопрецизионное опорное напряжение с допустимым отклонением не более ±2%. Типовое значение этого опорного напряжения составляет 3.5 В.

13

V3.3

Вход

Сигнал защиты от превышения напряжения в канале +3.3 В. На вход подается напряжение напрямую с канала +3.3V.

14

V5

Вход

Сигнал защиты от превышения напряжения в канале +5 В. На вход подается напряжение напрямую с канала +5V.

15

V12

Вход

Сигнал защиты от превышения напряжения в канале +12 В. На вход подается напряжение с канала +12V через резистивный делитель. В результате использования делителя, на этом контакте устанавливается напряжение примерно 4.2В (при условии, что в канале 12V напряжение равно +12.5 В)

16

PT

Вход

Вход дополнительного сигнала защиты от превышения напряжения. Этот вход может использоваться для организации защиты по какому-либо другому каналу напряжения. В практических схемах этот контакт используется, чаще всего, для защиты от короткого замыкания в каналах -5V и -12V. В практических схемах на этом контакте устанавливается напряжение, величиной около 0.35В. При повышении напряжения до величины 1.25В, срабатывает защита и микросхема блокируется.

17

GND

-

«Земля»

18

DTC

Вход

Вход регулировки «мертвого» времени (времени, когда выходные импульсы микросхемы неактивны - см. рис.З). Неинвертирующий вход внутреннего компаратора «мертвого» времени смещен на 0.12 В внутренним источником. Это позволяет задать минимальное значение «мертвого» времени для выходных импульсов. Регулируется «мертвое» время выходных импульсов путем подачи на вход DTC постоянного напряжения величиной от 0 до 3.3В. Чем больше напряжение, тем меньше длительность рабочего цикла и больше время «мертвого» времени. Этот контакт часто используется для формирования «мягкого» старта при включении блока питания. В практических схемах на этом контакте устанавливается напряжение величиной примерно 0.18В.

19

C2

Выход

Коллектор второго выходного транзистора. После запуска микросхемы, на этом контакте формируются импульсы, которые следуют в противофазе импульсам на контакте С1.

20

Cl

Выход

Коллектор первого выходного транзистора. После запуска микросхемы, на этом контакте формируются импульсы, которые следуют в противофазе импульсам на контакте С2.

Рис. 2. Функциональная блок-схема ШИМ-контроллера FSP3528

Особенностями этой микросхемы являются:

- наличие встроенной защиты от превышения напряжений в каналах +3.3V/+5V/+12V;

- наличие встроенной защиты от перегрузки (короткого замыкания) в каналах +3.3V/+5V/+12V;

- наличие многоцелевого входа для организации любой защиты;

- поддержка функции включения блока питания по входному сигналу PSON;

- наличие встроенной схемы с гистерезисом для формирования сигнала PowerGood (питание в норме);

- наличие встроенного прецизионного источника опорных напряжений с допустимым отклонением 2%.

Рис. 3. Основные параметры импульсов.

 

 


Лицензия