Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 1 из 36      1 2 3 4>> 36

Новые игровые видеокарты Nvidia, новые профессиональные ускорители Quadro.

Статья добавлена: 05.09.2018 Категория: Ремонт ПК

Новые игровые видеокарты Nvidia, новые профессиональные ускорители Quadro. Всего было анонсировано три модели: Quadro RTX 5000, Quadro RTX 6000 и Quadro RTX 8000. Все новинки основаны на архитектуре Turing. Уже известно, что площадь новых GPU составляет 754 мм2, а количество транзисторов достигает 18,6 млрд. При этом у старшей из карт 4608 ядер CUDA. Напомним, GPU GV100 имеет площадь 815 мм2, содержит 21,1 млрд транзисторов и включает 5376 ядер CUDA (CUDA – это архитектура параллельных вычислений от NVIDIA, позволяющая существенно увеличить вычислительную производительность благодаря использованию GPU процессоров). Архитектура Turing оснащена специальными процессорами для трассировки лучей – ядрами RT. Они ускоряют расчеты перемещения света и звука в 3D-средах до 10 миллиардов лучей в секунду. Turing позволяет осуществлять трассировку лучей в реальном времени в 25 раз быстрее по сравнению с предыдущим поколением GPU Pascal, а финальный рендеринг эффектов в фильмах на GPU в 30 раз быстрее, чем на CPU. Архитектура Turing существенно улучшает производительность растеризации по сравнению с предыдущим поколением GPU Pascal благодаря улучшенным процессам обработки графики и программируемым технологиям шейдинга.Технологии включают в себя Variable-Rate Shading, Texture-Space Shading и Multi-View Rendering, которые обеспечивает гибкую интерактивность с большими моделями и сценами, а также улучшенными возможностями в VR. Turing оснащена новыми тензорными ядрами; эти процессоры ускоряют тренировку и инференс глубоких нейронных сетей, обеспечивая до 500 трлн тензорных операций в секунду. Данный уровень производительности существенно ускоряет такие функции на базе искусственного интеллекта, как шумоподавление, масштабирование разрешения и изменение скорости видео, а также позволяет быстрее создавать приложения с новыми производительными возможностями. GPU на базе архитектуры Turing оснащены новым мультипотоковым процессором, который поддерживает до 16 трлн операций с плавающей точкой параллельно с 16 трлн целочисленных операций в секунду. Разработчики могут использовать до 4608 ядер CUDA с поддержкой NVIDIA CUDA 10 и SDK FleX и PhysX, создавая сложные симуляции частиц или динамики жидкостей для научной визуализации, виртуальных сред и эффектов. Что касается параметров самих ускорителей, они таковы:

Видеопамять GDDR4, GDDR5, GDDR5X, GDDR6. HMC, HBM.

Статья добавлена: 31.08.2018 Категория: Ремонт ПК

Видеопамять GDDR4, GDDR5, GDDR5X, GDDR6. HMC, HBM. Видеопамять GDDR4 используется на частотах от 1 ГГц DDR (2 ГГц) и вплоть до 2,2-2,4 ГГц DDR (4-4,8 ГГц), что обеспечивает достаточно высокую пропускную способность, особенно в секторе графических решений. GDDR4 была ориентирована на рынок графических решений, ожидалось, что GDDR4 будет обладать гораздо большим энергопотреблением. Технология предоставляла непревзойденную мультимедийную поддержку для программных средств, которые могли помочь индивидуальным творцам реализовать плоды своего воображения. Технология GDDR4 позволяет осуществлять визуализацию цифровых материалов с кинематографическим качеством и создавать высокореалистичные игры, а также поддерживает мощные и эффективные инструментальные средства для творчества и повышения продуктивности работы. Память стандарта GDDR-5 – это видеопамять с увеличенной в два раза пропускной способностью, с новыми технологиями энергосбережения, а также алгоритмом выявления ошибок (память типа GDDR-5 в три раза быстрее микросхем GDDR-3, работающих на частоте 1600 МГц DDR). Память типа GDDR-5 использует две тактовые частоты для разных операций, что позволяет свести к минимуму задержки на операциях записи и чтения. Чипы памяти имеют плотность 512 Мбит, они способны передавать до 24 гигабайт данных в секунду, и работать на частотах свыше 3.0 ГГц DDR при напряжении 1.5 В (компания Qimonda - поставщик GDDR-5 для видеокарт AMD).Разговоры о возможности использования производителями видеокарт памяти типа GDDR-5 ходили уже давно, но практическая реализация этой идеи началась только летом 2008 года - видеокарты Radeon HD 4870 уже оснащались 1 Гб памяти типа GDDR-5. Компания Qimonda тогда объявила, что стала партнёром AMD по выпуску графических решений с памятью типа GDDR-5. Массовые поставки соответствующих микросхем начались всего через полгода после появления первых образцов. Таким образом, первые видеокарты Radeon HD 4870 были оснащены памятью типа GDDR-5 производства Qimonda. Вслед за настольным сектором память типа GDDR-5 прописалась и в ноутбуках, а затем и в игровых консолях. Для компании AMD поставлялись микросхемы плотностью 512 Мбит, способные работать на скорости 4.0 ГГц DDR, а память видеокарт Radeon HD 4870 работала на частоте 3870 МГц DDR. Идут поставки микросхем GDDR-5, способных работать и на частоте 5.0 ГГц DDR и 6.0 ГГц DDR. Основам ныне применяемых стандартов DRAM уже не один десяток лет, и их улучшение позволило повысить пропускную способность, но далеко не настолько, насколько выросла производительность CPU и GPU за это время. Особенно это касается графических процессоров, и индустрии требуются новые типы памяти, которые дадут совершенно иные возможности, вроде Wide I/O, HMC и HBM.

Управление внешними устройствами ПК.

Статья добавлена: 23.07.2018 Категория: Ремонт ПК

Управление внешними устройствами ПК. Главная функция микропроцессора — это выполнение заданного для него набора команд: - выполняя последовательность команд (т. е. Программу) он вычисляет, управляет внешними устройствами, рассчитывает зарплату и т. п. , он может выполнять и бессмысленную последовательность своих команд - ему все равно — он автомат (принцип программного управления — мы пишем программу — он исполняет); - для реализации Главной функции процессор выполняет целый ряд аппаратных функций: формирует адреса для выборки последовательности команд, инициирует на Системном интерфейсе операцию «Чтение команды» и др.; Главная внешняя функция микропроцессора - это инициирование операций обмена на системном интерфейсе. Выбирая команды, выполняя большинство команд, выполняя аппаратную функцию прерывания процессор инициирует на системном интерфейсе операции обмена: «Чтение команды», «Чтение данных из памяти», «Запись данных в память», «Чтение порта», «Запись в порт», «Чтение дескриптора» и др. Операцию обмена «Чтение порта» - процессор инициирует выполняя свою команду IN AL,DX — чтение порта, а «Запись в порт» - отрабатывая свою команду OUT DX,AL — запись в порт. Выполняя, например, команду сложения ADD [1000], BX процессор два раза обратится в ОЗУ: первый раз — для чтения второго слагаемого (из ячейки с адресом 1000), а второй раз - для записи результата сложения содержимого регистра BX со вторым слагаемым (по адресу 1000). В операциях обмена с одной стороны всегда участвует один из регистров процессора, а с другой стороны - ячейка оперативной памяти (DRAM или ПЗУ BIOS), или регистр контроллера внешнего устройства, или регистр чипсета и других микросхем (исключение — обмен по «прямому доступу»). А что есть у процессора для управления внешними устройствами (устройствами ввода, вывода, устройствами внешней памяти)? Есть всего две команды: IN и OUT («чтение порта» и «запись в порт»), и есть аппаратная функция «прерывание» (без которой он в принципе может обойтись). Есть еще две команды — INS, OUTS (без которых он в принципе тоже может обойтись).

Ремонт мобильного SoC (system-on-a-chip) компьютера.

Статья добавлена: 09.07.2018 Категория: Ремонт ПК

Ремонт мобильного SoC (system-on-a-chip) компьютера. Характер проявления неисправности (по словам хозяина): компьютер (LA-B301P REV 1.0) после включения электропитания выполняет Post-тест без ошибок, нормально загружается операционная система, но затем в произвольный момент времени компьютер «зависает» и не реагирует на нажатия на клавиши клавиатуры и «мышку». После выключения и затем включения электропитания компьютер может опять «загрузиться» и некоторое время работать, а может и не подавать признаков «жизни». Проверка компьютера показала, что информация соответствует истине, но еще выяснили что кнопки «вкл. Питания» и «сброса» начинают действовать только после длительной паузы, что сразу подсказало причину возникшей ситуации — перегрев процессора. Если внутренняя температура кристалла процессора поднимается примерно до 135 oС, то процессор останавливается и формирует сигнал аварийного останова процессора по перегреву - THERMTRIP# (Thermal Trip). Данный сигнал (см. рис. 1), который может быть сброшен только сигналом RESET# после снижения температуры ниже этого порога.

Код коррекции ошибок (код ECC).

Статья добавлена: 29.06.2018 Категория: Ремонт ПК

Код коррекции ошибок (код ECC). Компания Intel и прочие производители наборов микросхем системной логики внедрили поддержку контроля четности и кода ECC в большинстве своих продуктов (особенно в наборах микросхем, ориентированных на рынок высокопроизводительных серверов). В то же время наборы микросхем низшей ценовой категории, как правило, не поддерживают эти технологии. Пользователям, требовательным к надежности выполняемых приложений, следует обращать особое внимание на поддержку контроля четности и ECC. Коды коррекции ошибок (Error Correcting Code — ECC) позволяют не только обнаружить ошибку, но и исправить ее в одном разряде. Поэтому компьютер, в котором используются подобные коды, в случае ошибки в одном разряде может работать без прерывания, причем данные не будут искажены. Коды коррекции ошибок в большинстве ПК позволяют только обнаруживать, но не исправлять ошибки в двух разрядах. Но приблизительно 98% сбоев памяти вызвано именно ошибкой в одном разряде, т.е. она успешно исправляется с помощью данного типа кодов. Данный тип ECC получил название SEC DED (single-bit error-correction double-bit error detection — одноразрядная коррекция, двухразрядное обнаружение ошибок). В кодах коррекции ошибок этого типа для каждых 32 бит требуется дополнительно семь контрольных разрядов при 4-байтовой и восемь — при 8-байтовой организации (64-разрядные процессоры Athlon/Pentium). Реализация кода коррекции ошибок при 4-байтовой организации, очевидно, дороже реализации проверки нечетности или четности, но при 8-байтовой организации стоимость реализации кода коррекции ошибок не превышает стоимости реализации проверки четности. Для использования кодов коррекции ошибок необходим контроллер памяти, вычисляющий контрольные разряды при операции записи в память. При чтении из памяти такой контроллер сравнивает прочитанные и вычисленные значения контрольных разрядов и при необходимости исправляет испорченный бит (или биты).

PSI# - процессорный сигнал индикатора статуса питания.

Статья добавлена: 28.06.2018 Категория: Ремонт ПК

PSI# - процессорный сигнал индикатора статуса питания. В основу новой схемотехники модулей питания процессора положен принцип динамического выбора числа активных фаз в зависимости от потребностей процессора. Задача измерения тока, потребляемого процессором, возложена на ШИМ-контроллер (или на внешнюю схему – по желанию разработчиков). Регулировка подачи питания на процессор производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал о величине тока поступает на процессор, а тот в свою очередь определяет, в каком состоянии находится – в стандартном или с низкой нагрузкой. В случае низкой нагрузки сигнал PSI # поступает обратно на ШИМ-контроллер, который может отключить часть фаз за ненадобностью и тем самым снизить энергопотребление всей схемы питания. Сигнал PSI позволяет повысить эффективность регулятора напряжения питания процессора и улучшить тем самым энергоэкономичность компьютеров. PSI# - процессорный сигнал индикатора статуса питания. Этот сигнал устанавливается, когда текущее максимально допустимое потребление ядра процессора меньше 20А. Установка этого сигнала индицирует, что контроллер VR не требует в данный момент значения ICC более, чем 20 А, и VR-контроллер может использовать эту информацию, чтобы передать ее в более эффективные рабочие (оперативные) точки. Этот сигнал будет сброшен менее чем через 3,3 мкс до того, как текущее потребление превысит 20 А. Минимальное время установки и сброса сигнала – 1 BCLK. Индикатор состояния мощности (сигнал PSI) используется для повышения экономичности работы VRM-модуля при малой загрузке. Разработчики всегда ищут компромисс между числом фаз (транзисторных каскадов) и стоимостью реализации. В основу новой схемотехники модулей питания процессора положен принцип динамического выбора числа активных фаз в зависимости от потребностей процессора. Задача измерения тока, потребляемого процессором, возложена на ШИМ-контроллер (или на внешнюю схему – по желанию разработчиков).

Профилактические мероприятия продляют срок безотказной работы компьютера.

Статья добавлена: 25.06.2018 Категория: Ремонт ПК

Профилактические мероприятия продляют срок безотказной работы компьютера. Большинство профилактических мероприятий сводятся, главным образом, к периодической чистке как всей системы, так и отдельных ее компонентов. Чистка и смазка всех основных элементов, переустановке микросхем, перестыковка разъемов, а также выполнение работ по предупреждению искажений файлов и системной информации, обеспечивающей поддержку файловых систем, переформатирование жестких дисков с целью исключения дефектных участков должны выполняться периодически (по графику), и как реакция на отказы или сбои оборудования, или в ответ на сообщения об ошибках со стороны операционной системы. Существуют общие профилактические мероприятия и меры, которые направлены на защиту компьютера от внешних неблагоприятных воздействий и позволяют обеспечить безопасность компьютера. Установка защитных устройств в сети электропитания, поддержании должного уровня чистоты и требуемого диапазона температуры в помещении, где установлен компьютер, уменьшении уровня внешних помех, вибрации и т.п. обычно относят к пассивным профилактическим мерам, о которых тоже не следует забывать, и которые не менее важны чем активные профилактических мероприятия. Насколько часто вам придется выполнять активное профилактическое обслуживание компьютера, зависит от состояния окружающей среды и качества компонентов системы. Если компьютер установлен, например, в механическом цехе завода, то, возможно, вам придется чистить его раз в квартал или чаще, а чистка компьютеров, установленных в бухгалтерии, офисе, обычно осуществляется раз в два года. Но если после нескольких месяцев эксплуатации, вскрыв, вы обнаружите в компьютере слой пыли, то время между профилактическими работами придется сократить.

Использование универсальных очистителей для чистки ПК.

Статья добавлена: 22.06.2018 Категория: Ремонт ПК

Использование универсальных очистителей для чистки ПК. В операциях чистки персональных компьютеров (ПК) часто используются универсальные очистители. Для приготовления этих чистящих растворов используются разнообразные реактивы, но лишь пять из них находятся под особым контролем. Агентство по защите окружающей среды (ЕРА) подразделяет химические соединения, опасные для озонового слоя, на классы I и II (использование веществ, отнесенных к этим двум классам, строго контролируется), а остальные реактивы могут использоваться без ограничений. К классу I относятся хлорсодержащие растворители. Чаще всего из веществ, относящихся к классу I, используются различные фреоны, по химическому составу являющиеся хлорфторуглеродами. Еще одно популярное чистящее средство - трихлорэтан. Поскольку он представляет собой хлорсодержащий растворитель, его применение теперь также строго регламентируется До последнего времени практически все чистящие растворы делались на основе одного из этих реактивов или их смеси, хотя формально использование этих веществ ограничивается, и их производство сократилось, но и до сих пор они встречаются в продаже. Химические вещества класса II представляют собой хлорфторсодержащие углеводороды. Их использование регламентируется не так строго, поскольку они менее опасны для озонового слоя (способность разрушения озона большинства хлорфторсодержащих углеводородов примерно в 10 раз ниже, чем у хлорфторуглеродов). Многие чистящие растворы и сейчас делаются на их основе, потому что в этом случае на изделия не нужно приклеивать специальный предупреждающий ярлычок, необходимый при использовании реактивов класса I. К химическим веществам, применение которых не регламентируется, относятся летучие органические соединения и фторсодержащие углеводороды. Сами по себе они не повреждают озоновый слой, но влияют на процесс его восстановления. Фторсодержащие углеводороды часто используются в качестве заменителей хлорфторуглеродов, поскольку они не повреждают озоновый слой.

Особенности памяти DDR4 SDRAM.

Статья добавлена: 21.06.2018 Категория: Ремонт ПК

Особенности памяти DDR4 SDRAM. Оперативная память DDR4 SDRAM, привнесла в серверные, настольные и мобильные платформы значительное увеличение производительности. Но достижение новых рубежей быстродействия требует радикальных изменений в топологии подсистемы памяти. Эффективная частота модулей DDR4 SDRAM составит от 2133 до 4266 МГц. Перспективные модули памяти не только быстрее, но и экономичнее своих предшественников. Они используют пониженное до 1,1-1,2 В напряжение питания, а для энергоэффективной памяти штатным является напряжение 1,05 В. Производителям чипов DRAM при изготовлении микросхем DDR4 SDRAM пришлось прибегать к использованию самых передовых производственных технологий. Массовый переход на использование DDR4 SDRAM планировался на 2015 год, но при этом необходимо иметь в виду, что экстремально высокие скорости работы памяти нового поколения потребовали внесения изменений в привычную структуру всей подсистемы памяти. Дело в том, что контроллеры DDR4 SDRAM смогут справиться лишь с единственным модулем в каждом канале. Это значит, что на смену параллельному соединению модулей памяти в каждом канале придёт чётко выраженная топология точка-точка (каждая установленная планка DDR4 будет задействовать разные каналы). Чтобы гарантировать высокие частоты спецификация DDR4 поддерживает только один модуль на каждый контроллер памяти. Это означает, что производителям потребовалось увеличить плотность чипов памяти и создать более продвинутые модули. В то же время тайминги продолжали расти, хотя время доступа продолжало снижаться.

Способы экономии энергии в процессорах Skylake.

Статья добавлена: 20.06.2018 Категория: Ремонт ПК

Способы экономии энергии в процессорах Skylake. Стремление к экономии электроэнергии, повышению энергоэффективности значительно повлияло на дизайн процессоров Skylake. Получили развитие как традиционные подходы, так и некоторые принципиально новые идеи. Ведь теперь процессорный дизайн не включает в себя интегрированный преобразователь питания. Он был убран именно из соображений экономичности – в наиболее энергоэффективных CPU с тепловым пакетом порядка 4,5 Вт это решение оказалось слишком расточительным, поэтому теперь конвертер питания вновь помещен на материнских платах. Но в будущих микроархитектурах Intel собирается опять вернуть преобразователь обратно в процессор (но не во всех версиях дизайна, а только в тех, которые рассчитаны на достаточно либеральные тепловые пакеты). Основное нововведение в процессорах Skylake состоит в том, что процессор разбили на большее, чем раньше, число энергетических доменов, способных независимо отключаться от линий питания в случае их бездействия. Дело дошло даже до отдельных исполнительных устройств, например, в Skylake могут независимо обесточиваться в случае простоя даже 256-битные исполнительные устройства, отвечающие за исполнение AVX2-команд (но подобные техники в том или ином виде используются уже очень давно). Между тем в Skylake есть и действительно революционное нововведение – технология Speed Shift, суть которой заключается в том, что процессору теперь даётся куда большая свобода действий в управлении собственными энергосберегающими состояниями.

Смартфон, телефон, планшет.

Статья добавлена: 15.06.2018 Категория: Ремонт ПК

Смартфон, телефон, планшет. Смартфон – это мобильный телефон, оснащенный мощной операционной системой, которая в свою очередь позволяет работать со множеством приложений одновременно. Другими словами, смартфон это аналог компьютера. Он может выполнять почти все те же действия. Смартфон это телефон, имеющий начинку и функционал почти как у компьютера. Английское слово smart означает «умный», так что любому смартфону под силу решать множество сугубо «компьютерных» задач: установка программ, подключение к интернету, многозадачность, офисные приложения, игры и так далее. Сегодня смартфоны с сенсорными экранами окончательно вытеснили с рынка «обычные» кнопочные телефоны. Среди современных смартфонов лидируют iPhone и флагманы от Samsung. Чем смартфон отличается от телефона? Во-первых, прошивкой. Каждый смартфон должен иметь гибкую и мощную операционную систему, такую как Android или iOS, позволяющую устанавливать приложения сторонних разработчиков. Во-вторых, железом. На современных смартфонах установлены мощнейшие процессоры и видеокарты, объёмы оперативной памяти исчисляются гигабайтами, а экраны поражают своей яркостью и отзывчивостью. Но все эти плюсы имеют один существенный недостаток: они слишком быстро разряжают батарею. Современные смартфоны по размеру экрана и заложенным мощностям приближаются, а порой и перегоняют планшеты. Если разбирать отличия смартфонов от планшетов в глобальном пользовательском смысле, то по функционалу между ними можно проследить следующую разницу:

Основные особенности UEFI (Unified Extensible Firmware Interface).

Статья добавлена: 14.06.2018 Категория: Ремонт ПК

Основные особенности UEFI (Unified Extensible Firmware Interface). UEFI (Unified Extensible Firmware Interface) — замена устаревшему BIOS. Эта спецификация была придумана Intel для Itanium, тогда она еще называлась EFI (Extensible Firmware Interface), а потом была использована и на x86, x64 и ARM. Она разительно отличается от BIOS как самой процедурой загрузки, так и способами взаимодействия с ОС. В настоящее время разработкой UEFI занимается Unified EFI Forum. Основные отличия UEFI от BIOS:

Стр. 1 из 36      1 2 3 4>> 36

Лицензия