Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Ремонт ПК

Стр. 1 из 46      1 2 3 4>> 46

Оптимизация затрат при ремонте видиостен и их компонентов.

Статья добавлена: 20.02.2020 Категория: Ремонт ПК

В виду большой стоимости видиостен и их компонентов ремонт путем замены дефектных компонентов видиостены экономически нецелесообразен. При такой стоимости видиостен и их компонентов экономически выгодно осуществлять ремонт на профессиональном уровне восстановления работоспособности компонента видеостены (например, замена LCD панели для видеостены LEVEL IX4607 будет стоить 223 865 руб., а ее ремонт — примерно 22 000 руб. , а возможно и значительно меньше). Замена видеоконтроллеров , потоковых медиапроцессоров, видеопроцессоров, контроллеров видеостены еще более затратная процедура (например, от 229 788 Руб. до 4 476 345 руб.), а их профессиональный ремонт еще выгоднее. Для качественного профессионального ремонта (кроме курса по видеостенам) желательно пройти обучение по следующим курсам:

Режим SMM в процессорах.

Статья добавлена: 17.01.2020 Категория: Ремонт ПК

Режим SMM в процессорах. В режим SMM процессоры входят по сигналу на входе SMI# (System Management Interrupt), но более совершенные процессоры могут входить в режим SMM и по приему соответствующего сообщения по шине контроллера прерываний APIC. Сигнал SMI# для процессора является запросом на прерывание с наивысшим приоритетом. Обнаружив активный сигнал SMI#, процессор по завершении текущей инструкции и выгрузки буферов записи переключается в режим SMM, и формирует выходной сигнал SMIACT#. Сразу при входе в SMM процессор сохраняет свой контекст (практически почти все регистры) в специальной памяти SMIRAM. Эта память использует часть адресного пространства физической памяти, доступ к которой обеспечивается только при наличии сигнала SMIACT#. После сохранения контекста процессор переходит к выполнению программы-обработчика SMI, которая расположена в памяти SMIRAM. Программа-обработчик состоит из последовательности обычных инструкций, исполняемых процессором в режиме, аналогичном реальному режиму. При входе в режим SMM автоматически запрещаются аппаратные прерывания (маскируемые и немаскируемые) и не генерируются исключения, поэтому действия процессора определяются программой-обработчика SMI. Программа-обработчик завершается инструкцией RSM (RSM выполняется только в режиме SMM), по которой процессор восстанавливает свой контекст из SMIRAM, и возвращается в обычный режим работы.

Алгоритмы тестирования памяти (тесты памяти).

Статья добавлена: 14.01.2020 Категория: Ремонт ПК

Алгоритмы тестирования памяти (тесты памяти). Каждое включение компьютера, принтера и многих других устройств имеющих ОЗУ начинается с проверки работоспособности этой части устройства. Для диагностики используют различные алгоритмы проверки памяти в тестовых программах для ОЗУ различных устройств. Возможные неполадки памяти могут иметь источники на любом уровне. Весьма уязвимым местом памяти являются контактные соединения модулей и микросхем памяти с печатной платой. Здесь возможны как нарушения контактов (полные, т.е. обрывы, которые выявляются легко и частичные – повышение сопротивления окислившихся контактов, что выявляется с трудом), так и замыкание соседних цепей токопроводящим мусором или погнутым контактом. Существует достаточно большое число алгоритмов тестирования памяти, но наиболее часто используются следующие из них: простое чтение и запись; тест последовательных чисел; циклический тест; галопирующий тест; двухадресный тест; тест суммирования. Рассмотрим подробнее каждый из выше перечисленных алгоритмов.

Проблемы решаемые дисковыми массивами RAID (ликбез).

Статья добавлена: 26.12.2019 Категория: Ремонт ПК

Проблемы решаемые дисковыми массивами RAID (ликбез). Возросшая в последнее время производительность вычислительных систем ограничена производительностью наиболее медленного звена - дисковой подсистемы, а время поиска данных в высокопроизводительных настольных системах или обычных PC LAN зачастую становится "бутылочным горлышком" производительности всей системы. В настоящее время, жесткие диски отличаются высокой загрузкой процессора, достаточной для заметного снижения общей производительности системы, и даже появление новых более производительных стандартов не снимает этой проблемы. RAID - Redundant Array of Independent (или Inexpensive) Disks - избыточный массив независимых (или недорогих) дисков. RAID это несколько жестких дисков, объединенных в одну систему для обеспечения отказоустойчивости. Контроллер системы RAID помещается между высокоскоростным потоком данных и несколькими более медленными потоками данных, направленными в диски массива RAID. При выполнении компьютером записи на диск контроллер RAID принимает быстрый поток данных и разбивает его на несколько синхронизированных потоков, по одному на каждый диск (расщепление потока данных - stripping). При чтении контроллер RAID принимает потоки данных с каждого диска, объединяет эти потоки в один и передает более быстрый поток данных дальше. Контроллер системы RAID выполняет также функции коррекции ошибок (например в массив из восьми дисков можно добавить девятый содержащий только информацию для коррекции ошибок). Если в таком RAID-массиве откажет диск содержащий данные, то контроллер RAID, используя корректирующие коды, восстановит потерянные данные. Существует несколько вариантов реализации RAID, называемых уровнями (например 0,1,2,3,4,5,6,7,8 и др.). Разные уровни RAID обеспечивают различную производительность и устойчивость к сбоям, имеют разную стоимость. Применение RAID-массивов целесообразно в случае критически важных задач, требующих высокой надежности и производительности. Это хранилища данных, оперативная обработка транзакций, корпоративные вычислительные системы и т. д. Во всех этих случаях организуют внешний RAID-массив большой емкости. При организации внешнего RAID-массива его отказоустойчивость и помехозащищенность достигается несколькими независимыми уровнями защиты:

Ликбез для пользователей. Моноблок, стационарный ПК, ноутбук, планшет, смартфон, телефон.

Статья добавлена: 25.12.2019 Категория: Ремонт ПК

Чем моноблок отличается от ноутбука или стационарного ПК? Свою вторую жизнь моноблочный компьютер получил в самом начале 21 века, они стали именно такими, которые используются в настоящее время, ну может чуточку по массивнее. Из-за борьбы с температурой образовывающуюся благодаря небольшому пространству в корпусе моноблока, многие из них собираются на мобильных версиях комплектующих. Хоть выделение тепла стало меньшим, производительность тоже понизилась. Моноблок, так же может быть собран из самых обыкновенных комплектующих или же гибридных – совмещающих в себе и мобильные компоненты и компоненты, используемые в настольном ПК. И так моноблок – это компьютер, ОЗУ и HDD, материнская плата и процессор, блок питания графический адаптер в обязательном порядке являются его неотъемлемой частью. Сама по себе компьютерная система, исполненная моноблоков - это довольно удобная стационарная версия компьютера. Большинство таких моноблочных компьютеров оснащены модулями беспроводных устройств связи, Wi-Fi и Bluetooth, что способствует беспроводному приёму и передачи информации. Чем планшет отличается от ноутбука или стационарного ПК? Архитектура Intel x86. С выходом Windows 10 пользователь купив планшет, получает полноценный компьютер в компактном корпусе. Планшеты предназначены и для одновременной работы с несколькими программами. Более того, планшеты под управлением Windows 10 – это полноценный компьютер в компактном корпусе, который по производительности не уступает ноутбуку или стационарному ПК. Процессор Broadwell от Intel уже был ориентирован в безвентиляторные мобильные технологии. Так что уже было вполне возможно появление линейки так называемых планшетофонов. Например, процессоры с архитектурой Skylake, выпускаемые с соблюдением норм 14-нм техпроцесса Intel, изготавливаются сразу практически для всех сегментов вычислительной техники – от миниатюрных мобильных устройств до серверов (это гораздо энергичнее, нежели 22-нм чипы Haswell, и гораздо масштабнее чем предыдущее поколение с рабочим названием Broadwell, когда, почти "в обход" десктопных платформ, основной упор был сделан на чипы для только для ноутбуков и планшетов). Шестое поколение многоядерных процессоров Intel Core с рабочим названием Skylake с полным на то правом можно назвать одним из наиболее масштабируемых и революционных за всю историю архитектуры Core. В этом заявлении нет ни малейшего преувеличения. Так, масштабируемость подтверждает ассортимент из почти 50 наименований Xeon, Core i3/5/7, Core M3/5/7, Pentium и Celeron с впечатляющим разбросом характеристик: - от крохотных (20 х 16,5 мм) чипов в компактной корпусировке BGA1515 с TDP 4,5 Вт - до мощных разблокированных десктопных LGA1151 процессоров вроде Core i7-6700K с габаритами 37,5 x 37,5 мм и TDP порядка 91 Вт. То есть, 20-кратная масштабируемость по энергопотреблению и 4-кратная по размерам чипа. Чем смартфон отличается от телефона? Отличия смартфонов от планшетов. Смартфон– это мобильный телефон, оснащенный мощной операционной системой, которая в свою очередь позволяет работать со множеством приложений одновременно. Другими словами, смартфон это аналог компьютера. Он может выполнять почти все те же действия. Смартфон это телефон, имеющий начинку и функционал почти как у компьютера. Английское слово smart означает «умный», так что любому смартфону под силу решать множество сугубо «компьютерных» задач: установка программ, подключение к интернету, многозадачность, офисные приложения, игры и так далее. Сегодня смартфоны с сенсорными экранами окончательно вытеснили с рынка «обычные» кнопочные телефоны. Среди современных смартфонов лидируют iPhone и флагманы от Samsung. Так чем же смартфон отличается от телефона? Во-первых, прошивкой. Каждый смартфон должен иметь гибкую и мощную операционную систему, такую как Android или iOS, позволяющую устанавливать приложения сторонних разработчиков. Во-вторых, железом. На современных смартфонах установлены мощнейшие процессоры и видеокарты, объёмы оперативной памяти исчисляются гигабайтами, а экраны поражают своей яркостью и отзывчивостью. Но все эти плюсы имеют один существннный недостаток: они слишком быстро разряжают батарею. Современные смартфоны по размеру экрана и заложенным мощностям приближаются, а порой и перегоняют планшеты.

Диагностика и ремонт материнской платы ASUS P7P55D PRO.

Статья добавлена: 20.12.2019 Категория: Ремонт ПК

Диагностика и ремонт материнской платы ASUS P7P55D PRO. Представленная на ремонт системная плата, по словам ее владельца, в составе системного блока ПК не заработала нормально, но все остальные компоненты компьютера исправны (проверили установкой такой же материнской платы в системный блок). Поиск неисправности в системной плате привезенной на ремонт производился по «классической» схеме на стенде, имитирующем оборудование ПК. В результате внешнего осмотра было установлено, что нет видимых повреждений, нет неустановленного оборудования, было видно, что плата эксплуатировалась в нормальных условиях и заметного ее загрязнения нет, осмотр контактов съемных компонентов материнской платы дефектов тоже не обнаружил (рис. 1, 2). До включения электропитания были проведены измерения, и было обнаружено, что напряжение батареи CMOS-памяти в норме, генератор часов реального времени (32.768 kHz) функционирует нормально (рис. 3), положение джамперов соответствует требованиям установленного оборудования и нормальным режимам работы. О возможном замыкании или повышенной нагрузке в цепях питания устройств, размещенных на данной системной плате можно судить, анализируя диагностическую информацию, полученную с разъема ATX (рис. 4) с помощью омметра. Измеряя сопротивление, например, между контактом +5 вольт и "землей" на разъеме электропитания в прямом и обратном измерении (при нормальной «нагрузке» при прямом и обратном измерении видна разница измеренного сопротивления в соотношении примерно 3:2). Данные наших замеров по всем вариантам питания говорили об отсутствии в «нагрузках» короткого замыкания, замеренного через линии питания. Но ведь возможны замыкания или обрывы в логических цепях, а это может выясниться только после подаче на плату электропитания).

Пример поиска неисправности в системной плате ПК (MS-7758).

Статья добавлена: 12.12.2019 Категория: Ремонт ПК

Пример поиска неисправности в системной плате ПК (MS-7758). Общеизвестен факт, что отрицательное воздействие внешней среды и использование дешевых компонентов при пайке, непосредственно сказывается на показателях надежности печатных узлов и сборок выполненных по современным технологиям. Персональный компьютер, стоящий на обслуживании у грамотного специалиста-мастера, практически никогда не выходит из строя. Мастер знает, как обращаться с сложной компьютерной техникой, и не допускает ситуаций, в которых могут появиться дефекты, но на практике часто возникают ситуации нарушающие нормальное функционирование техники по причинам, которых трудно избежать и при грамотной эксплуатации. Например, современные технологии изготовления печатных плат и безсвинцовые технологии пайки не только экологичны и эффективны, но они (в определенных условиях) порождают ряд явлений, приводящих к отказам электронных схем. Микроскопические проростки металла из мест пайки на печатной плате («усы» олова) — часто являются одной из причиной возникновения отказов современных электронных схем из-за замыканий между контактами и проводниками. Представленная на ремонт системная плата, по словам ее хозяина «не работает в составе системного блока», но все остальные компоненты компьютера исправны (это было установлено установкой точно такой же материнской платы в системный блок). Поиск неисправности в системной плате (MS-7758) привезенной на ремонт производился по «классической» схеме на стенде имитирующем оборудование ПК. До включения электропитания были проведены измерения и было обнаружено, что напряжение батареи CMOS-памяти чуть ниже нормы, но генератор часов реального времени функционирует нормально, положение джамперов соответствует требованиям установленного оборудования и нормальным режимам работы. Нет видимых повреждений, нет неустановленного оборудования. Было видно, что плата эксплуатировалась в нормальных условиях и заметного ее загрязнения нет. О возможном замыкании в цепях питания устройств, размещенных на данной системной плате можно судить, анализируя диагностическую информацию, полученную с разъема ATX омметром. Измеряли сопротивление, например, между контактом +5 вольт и "землей" на разъеме электропитания в прямом и обратном измерении (при нормальной «нагрузке» при прямом и обратном измерении видна разница измеренного сопротивления в соотношении примерно 3:2). Данные наших замеров по всем вариантам питания говорили об отсутствии в «нагрузках» короткого замыкания, замеренного через линии питания, но ведь возможны замыкания или обрывы в логических цепях, а это может выясниться только после подаче на плату электропитания. Подключили «хороший» блок питания к разъему ATX системной платы и подали 220 вольт сети переменного тока на блок питания. Нажали кнопку включения питания. После включения электропитания и анализа состояния системной платы было зафиксировано: - состояние индикаторов: активен индикатор “Питание” на мониторе; - механические перемещения и вращения узлов внешних устройств – отсутствуют; - звуковые эффекты – отсутствуют; - тепловые эффекты и запахи, вызываемые излишним нагревом, отсутствуют; - звуковые сообщения программ через динамик - отсутствуют; - сообщения программ на экране монитора – отсутствуют. Таким образом, исходное состояния этой системы, полученное после включения электропитания не дало оснований для утверждения, что процессор выполнял, или начинал выполнять какую-либо программу.

Программы начального самотестирования - POST (ликбез).

Статья добавлена: 11.12.2019 Категория: Ремонт ПК

рограммы начального самотестирования - POST (ликбез). При включении компьютера, по окончании сигнала начального сброса системы (RESET) начинается выполнение программ POST (Power-On-Self-Test). В режиме исполнения программы начального самотестирования (POST) выполняется проверка процессора, памяти и системных средств ввода/вывода, а также конфигурирование всех программно-управляемых аппаратных средств системной платы. После успешного завершения тестирования и конфигурирования (включающего настройку устройств Р&Р), POST обычно выдает на экран монитора состав оборудования компьютера и передает управление программе начальной загрузки операционной системы. При обнаружении ошибок POST выдает диагностические сообщения в виде последовательности коротких и длинных звуковых сигналов, а после успешной инициализации графического адаптера - в виде коротких текстовых сообщений об ошибках на экран монитора. В процессе выполнения программ POST мы можем получить следующую диагностическую информацию: состояние индикаторов системной платы и внешних устройств; сообщения программ на экране монитора; звуковые сообщения программ через динамик; механические перемещения и вращения узлов внешних устройств и звуковые эффекты, связанные с этим; тепловые эффекты и запахи, вызываемые нагревом. Дождавшись устойчивого стационарного состояния системы, производим оценку этого состояния: по последней полученной до этого состояния информации по выполняемой в это время программе. Проводим тщательный анализ полученной информации и планируем действия, направленные на получение уточняющей диагностической информации. Рассмотрим устойчивые стационарные состояния (после отказа), связанные с исполнением программ POST. Например, возможны следующие варианты реакции POST на наличие дефекта в системной плате:

Режим управления системой SMM (System Management Mode).

Статья добавлена: 06.12.2019 Категория: Ремонт ПК

Режим управления системой SMM (System Management Mode). Главным образом, режим SMM предназначен для реализации системы управления энергопотреблением. Управление энергопотреблением - это автоматический перевод компьютера на пониженное потребление энергии в периоды неактивности. В настоящее время существует две системы ynpaвления электропитанием: В режим SMM процессор Pentium входил только по сигналу на входе SMI# (System Management Interrupt), но более современные процессоры могут входить в SMM и по приему соответствующего сообщения по шине контроллера прерываний APIC. Сигнал SMI# для процессора является запросом прерывания с наивысшим приоритетом. Обнаружив активный сигнал SMI#, процессор по завершении текущей инструкции и выгрузки буферов записи переключается в режим SMM, и формирует выходной сигнал SMIACT#. Сразу при входе в SMM процессор сохраняет свой контекст (практически почти все регистры ) в специальной памяти SMIRAM. Эта память использует часть адресного пространства физической памяти, доступ к которой обеспечивается только при наличии сигнала SMIACT#. После сохранения контекста процессор переходит к выполнению программы-обработчика SMI, которая расположена в памяти SMIRAM. Программа-обработчик состоит из последовательности обычных инструкций, исполняемых процессором в режиме, аналогичном реальному режиму. При входе в режим SMM автоматически запрещаются аппаратные прерывания (маскируемые и немаскируемые) и не генерируются исключения, поэтому действия процессора определяются программой-обработчика SMI. Программа-обработчик завершается инструкцией RSM (RSM выполняется только в режиме SMM ), по которой процессор восстанавливает свой контекст из SMIRAM, и возвращается в обычный режим работы.

Пассивные профилактические меры для надежной работы ПК.

Статья добавлена: 02.12.2019 Категория: Ремонт ПК

Пассивные профилактические меры для надежной работы ПК. Для надежной работы компьютерных систем не менее важно своевременное принятие, так называемых, пассивных профилактических мер. Под пассивной профилактикой подразумевают создание приемлемых для работы компьютера общих внешних условий (температура окружающего воздуха, тепловой удар при включении и выключении системы, пыль, дым, а также вибрация и удары, очень важны электрические воздействия, к которым относятся электростатические разряды, помехи в цепях питания и радиочастотные помехи). В помещении где установлены компьютеры, не должно быть пыли и табачного дыма. Нельзя ставить компьютер около окна так как солнечный свет и перепады температуры влияют на него отрицательно. Включать компьютер нужно в надежно заземленные розетки, напряжение в сети должно быть стабильным, без перепадов и помех. Нельзя устанавливать компьютер рядом с радиопередающими устройствами и другими источниками радиоизлучения (мобильные телефоны тоже являются источником помех для ряда схем компьютера). Чтобы компьютер работал надежно, температура в помещении должна быть стабильной. При колебании температуры существенно ускоряются «выползания» микросхем из гнезд, могут потрескаться или отслоиться токопроводящие площадки на печатных платах, разрушиться паянные соединения. При повышенной температуре ускоряется окисление контактов, могут выйти из строя микросхемы и другие электронные компоненты. Колебания температуры сказываются и на стабильности работы жестких дисков, (в некоторых накопителях при разных температурах информация записывается на диск с различными смещениями относительно среднего положения дорожек записи, в результате чего возникают проблемы с последующим считыванием). Для компьютеров обычно указывается допустимый диапазон температур, большинство фирм-изготовителей приводит эти данные в паспорте на изделие (температура эксплуатации и температура хранения), например, для большинства персональных компьютеров температура при эксплуатации (+15 - +32)°С, а при хранении (+10 - +43)°С. В целях сохранности жесткого диска, и записанных на нем данных, необходимо оберегать его от резких перепадов температуры, поэтому прежде чем его включить, дайте ему прогреться до комнатной температуры (на магнитных дисках накопителя может конденсироваться влага, и при его включении, накопитель тут же выйдет из строя). После длительного переохлаждения накопитель должен «прогреваться» при комнатной температуре от нескольких часов до суток. Если вы хотите, чтобы ваш компьютер работал долго и безотказно, чтобы свести к минимуму колебания температуры в системе, старайтесь как можно реже его включать и выключать (конечно надо обязательно учитывать и другие обстоятельства, например стоимость электроэнергии, пожарную безопасность и т.п.).

ПРОФИЛАКТИЧЕСКИЕ МЕРОПРИЯТИЯ ПО ОБСЛУЖИВАНИЮ ПК.

Статья добавлена: 02.12.2019 Категория: Ремонт ПК

РОФИЛАКТИЧЕСКИЕ МЕРОПРИЯТИЯ ПО ОБСЛУЖИВАНИЮ ПК. Целью выполнения любого профилактического мероприятия является продление срока безотказной работы компьютера. Большинство мероприятий сводятся, главным образом, к периодической чистке как всей системы, так и отдельных ее компонентов. Чистка и смазка всех основных элементов, переустановке микросхем, перестыковка разъемов, а также выполнение работ по предупреждению искажений файлов и системной информации, обеспечивающей поддержку файловых систем, переформатирование жестких дисков с целью исключения дефектных участков должны выполняться периодически (по графику), и как реакция на отказы или сбои оборудования, или в ответ на сообщения об ошибках со стороны операционной системы. Для чистки контактов разъемов, и других ответственных узлов обычно используют тампоны из поролона или искусственной замши, которые не оставляют после себя ворса, волосков и пыли, конечно, эти тампоны намного дороже ватных. Тампонами из ваты лучше не пользоваться, так как, после них остаются волокна хлопка, которые при определенных условиях могут стать проводящими. Чистящие тампоны из поролона или замши продаются в большинстве магазинов, торгующих аппаратурой и радиодеталями. Очистка с контактов разъемов и с печатных контактов грязи и оксидных пленок мягким карандашным ластиком приводит к тому, что при трении ластика о контакты образуются электростатические заряды, которые могут вывести из строя микросхемы, установленные на платах (чистить контакты печатных плат лучше «влажным» способом, используя для этого соответствующие жидкости). Кроме того, даже при использовании очень мягких ластиков защитное золотое покрытие частично стирается и контакт может со временем «окислиться». Ряд фирм выпускают специальные тампоны, пропитанные чистящим составом со смазывающими добавками, которые безопасны (отсутствуют электростатические разрядов, и нет истирания золотого покрытия контактов). Силиконовые смазки используются вместо машинных масел при чистке механизмов и направляющих печатающей головки принтера. Преимущество силикона заключается в том, что он со временем не загустевает и к нему не прилипает пыль. Количество наносимой смазки должно быть минимальным, капли и потеки совершенно недопустимы. Появление смазки в непредусмотренных для этого местах может привести к самым неприятным последствиям. Для точечного нанесения смазки лучше всего пользоваться пластмассовой зубочисткой, а если надо смазать поверхность (например, направляющие головки принтера), — губчатым тампоном. При выполнении очистных профилактических операций, могут образовываться статические заряды, поэтому обязательно почаще заземляйте в этих случаях все, что только можно (в том числе и себя), чтобы не вывести из строя микросхемы на платах.

Поиск неисправности в устройствах компьютера (способы снижения затрат на ремонт).

Статья добавлена: 29.11.2019 Категория: Ремонт ПК

Поиск неисправности в устройствах компьютера (способы снижения затрат на ремонт). Заключительный этап поиска неисправности в устройствах компьютера, как правило, требует исследования электронных схем с помощью осциллографа. Это исследование можно производить в устойчивом состоянии электронных схем устройств и программы после отказа. Но наибольший эффект при исследовании осциллографом можно получить, если с помощью программы активизировать исследуемый процесс. Для получения устойчивого изображения динамических сигналов на экране осциллографа необходимо, чтобы исследуемые в данном процессе сигналы повторялись периодически с одной и той же частотой. То есть необходимо циклически повторять исследуемый процесс, а это в большинстве случаев достаточно просто обеспечивается с помощью «зацикливания» программы, запускающей исследуемый процесс. Для получения такой информации, как: коды ошибок устройств, формируемые программами-функциями BIOS; байты состояния устройства, формируемые аппаратурой контроллеров; содержимое регистра ошибок или регистра состояния контроллера обычно, достаточно однократного выполнения в отладчике (например, AFD) небольшой специальной программы, запускающей контролируемый процесс в устройстве. Затем с помощью AFD прочитать, например, байты состояния устройства в области данных BIOS (область ОЗУ от 400h до 500h), регистры ошибок и состояний внешнего устройств, коды ошибок в регистре АН и AL микропроцессора. После анализа полученной диагностической информации можно приступать к планированию дальнейших действий по локализации неисправности. Часто квалифицированные специалисты по ремонту вычислительной техники относятся к написанию специальных программ с «большой осторожностью». Они считают, что написание таких программ очень сложное и возможно бесполезное, дело. Но научиться писать небольшие специальные программы несложно, а отказываться от такого мощного и эффективного инструмента просто неразумно и расточительно. С помощью специальных программ обычную системную плату можно превратить в универсальный стенд для диагностирования и ремонта большинства узлов и устройств компьютера. Умение программировать дает возможность создавать «инструментальные» программные средства, заменяющие аппаратные тестеры, используемые для контроля и диагностики устройств. Стоимость аппаратных тестеров достаточно высока, а их номенклатура невелика. Модификация и их приспособление к конкретному устройству - это сложное и дорогостоящее удовольствие. Разработанные «инструментальные» программные средства, в отличие от аппаратных тестеров, легко модифицируются и приспосабливаются для работы с любым устройством. Программным путем можно задать в устройстве любой необходимый для контроля режим работы, удобно и эффективно осуществлять контроль процессов осциллографом.

Стр. 1 из 46      1 2 3 4>> 46

Лицензия