Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Пример главного двигателя копировального аппарата.

Пример главного двигателя копировального аппарата.

 

Профессиональный ремонт предполагает, что специалист знает принципы построения и работы объекта ремонта.
Главный двигатель в данном копире выполнен в составе приводного модуля с соответствующим редуктором. Модуль фиксируется на корпусе копира в специально отведенном месте несколькими винтами. Зубчатый ротор двигателя вращает (через соответствующие передаточные числа редуктора) две шестерни, одна из них приводит в движение картридж драм-юнита, вторая - валы узла закрепления тонера и ролики протяжки бумаги. Сигналы управления и питания модуля приходят на плату управления двигателем со стороны основной платы управления копира, на разъем, обозначенный как CN1 .
Двигатель, используемый в данном копировальном аппарате, относится к типу бесколлекторных двигателей постоянного тока (или, иначе говоря, к шпиндельным двигателям), управление которым осуществляется с помощью специальной микросхемы (драйвер двигателя).
Конструктивно двигатель состоит из статора с определенным количеством обмоток и ротора с постоянным многополюсным кольцевым магнитом. В нашем случае в целях уменьшения шага и снижения пульсаций вращающего момента количество обмоток увеличено до 9, т.е. одна фаза имеет три обмотки (см. рис. 1).

QIP Shot - Image: 2017-03-27 12:45:48

Рис. 1. Конструкция главного двигателя копировального аппарата.


Ротор двигателя расположен снаружи и имеет постоянный кольцевой многополюсный магнит, а на статоре расположены обмотки, которые зафиксированы на плате (данную конструкцию двигателя называют "обращенной"). Чтобы вызвать вращение ротора, необходимо пропустить ток через обмотки статора в определенной последовательности. Питание обмоток статора осуществляется таким образом, что между намагничивающей силой (создаваемой статором) и магнитным потоком сохранялось смещение на определенный угол, т.е. создается вращающееся магнитное поле, воздействующее на постоянные магниты ротора. В результате, ротор, состоящий из кольцевого многополюсного постоянного магнита, начинает перемещаться вслед за магнитным полем статора и вращаться. Вращение ротора может продолжаться только в результате переключения обмоток статора. Причем при переключении должны выполняться два условия, согласно которым обмотки статора должны переключаться в определенный момент и с заданной последовательностью. Положение ротора при этом определяется с помощью датчиков положения, в качестве которых используются три датчика Холла. На выходе каждого из этих датчиков формируются дифференциальные сигналы, которые показывают силу и направление магнитного потока в том месте, где установлен датчик. Когда ротор вращается, сигналы от датчиков Холла представляют собой синусоидальные напряжения. На основе анализа сигналов от датчиков Холла, микросхема - драйвер двигателя подключает ту или иную фазу статора.
Сила магнитного поля определяет мощность и скорость двигателя. Изменением силы тока через обмотки можно добиться изменения частоты вращения и вращающего момента двигателя. Наиболее типичный способ регулировки силы тока - это управление средним значением тока через обмотки, что выполняется путем импульсной модуляции напряжения питания обмоток за счет задания длительностей подачи и снятия напряжения питания. Таким образом, чтобы добиться требуемого среднего значения напряжения и, как следствие, среднего тока. Скорость, как правило, задается двумя способами: опорным импульсным сигналом или регулировкой тока протекающего через обмотки двигателя. Принципиальная схема платы двигателя представлена на рис. 2.

QIP Shot - Image: 2017-03-27 12:46:27

Рис. 2. Принципиальная схема платы управления главного двигателя копировального аппарата.


Со стороны основной платы управления на модуль двигателя подаются сигналы управления, которые можно видеть на разъеме CN1. С помощью этих сигналов и обеспечивается управление двигателем. Номера контактов разъема, их обозначение, а также функциональное назначение представлены в таблице 1.

Таблица 1. Назначение сигналов разъема CN1

QIP Shot - Image: 2017-03-27 12:47:25

 


Скорость вращения двигателя определяется датчиком скорости индуктивного типа, обмотки которого выполнены в виде печатного монтажа (под магнитом ротора на печатной плате вытравлены меандровые дорожки проводника, образующие катушку индуктивности, в которой наводится ЭДС при вращении постоянного кольцевого магнита ротора).
Фазы двигателя на схеме обозначены W1, W2, W3, каждой фазе соответствует две обмотки на статоре двигателя. Положение ротора отслеживается тремя датчиками Холла, которые обозначены на принципиальной схеме HI, H2, НЗ. Управление обмотками выполняется выходным каскадом, реализованным в составе управляющей микросхемы. Формирование управляющих сигналов для двигателя, а также контроль тока в обмотках и управление ими осуществляется (как мы уже отметили) через специализированную микросхему (драйвер) LB1920. Микросхема LB1920 (см. рис. 2) предназначена для управления 3-фазным бесколлекторным двигателем. К ее особенностям можно отнести следующее:
- широкий диапазон рабочих напряжений: 9 - 30 В;
- возможность работы с токами, величиной до 3.1А;
- наличие встроенной защиты от превышения тока;
- наличие встроенной схемы контроля датчиков Холла;
- наличие цифровой регулировки скорости;
- наличие вывода внешней блокировки (S/S);
- наличие встроенной защиты от перегрева кристалла микросхемы.
Внутренняя структура микросхемы LB1920 и распределение сигналов по контактам микросхемы показаны на рис. 3. Назначение контактов микросхемы, входные и выходные сигналы описаны в таблице 2.

QIP Shot - Image: 2017-03-27 12:48:07

Рис. 3. Внутренняя структурная схема драйвера главного двигателя LB1920

Таблица 2. Назначение сигналов управляющей микросхемы LB1920

QIP Shot - Image: 2017-03-27 12:48:45

Учитывая тенденцию производителей применять шпиндельные двигателя во многих узлах устройств (для протяжки бумаги, в приводах узлов фиксации тонера, в блоках лазер-сканер и т.д.) мы надеемся, что данный материал будет полезен ремонтному и обслуживающему персоналу.

 


Лицензия