Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Чипы памяти и логические элементы на основе мемристоров.

Чипы памяти и логические элементы

на основе мемристоров.

                Чипы памяти на основе мемристоров обещают составить значительную конкуренцию флэш-памяти. Они работают, по крайней мере, вдесятеро быстрее и используют вдесятеро меньше энергии, чем эквивалентные чипы флэш-памяти. Память на основе мемристоров может быть стерта и перезаписана гораздо больше раз, чем флэш-память (при этом производство новых элементов памяти будет в два раза дешевле). Благодаря сочетанию скорости, выносливости, плотности и энергоэффективности мемристоры могут заменить DRAM и жесткие диски. 
                Принципиальное отличие мемристора от большинства типов современной полупроводниковой памяти и его главное преимущество перед ними заключаются в том, что он не хранит свои свойства в виде заряда. Это означает, что ему не страшны утечки заряда, с которыми приходится бороться при переходе на микросхемы нанометровых масштабов, и что он полностью энергонезависим. Проще говоря, данные могут храниться в мемристоре до тех пор, пока существуют материалы, из которых он изготовлен. Для сравнения: флэш-память начитает терять записанную информацию уже после года хранения без доступа к электрическому току. 
                В долгосрочной перспективе планируется объединить память на основе мемристоров и систему хранения данных на кремниевых процессорах в трехмерный гибридный чип - т. е. получим целый компьютер на одном чипе. Системы, оснащенные такими "процессорами", станут применяться для любых вычислений и задач, интенсивно использующих память, - таких как сейсморазведка, рендеринг анимационных фильмов или исследования космоса. 
                В 2010 года, уже была продемонстрирована способность мемристоров не только хранить информацию, но и выполнять логические операции. Со временем исследователи еще больше узнали о физических и химических свойствах мемристоров, и эти новые знания позволили по-новому взглянуть на особенности работы этих инновационных элементов. Мемристоры способны полностью изменить всю компьютерную отрасль, но пока мы в самом начале пути: наши знания непрерывно растут, а технологии совершенству ются (по оценкам специалистов, реальный вывод мемристоров на рынок может занять от 15 до 20 лет).
                Конструктивно мемристоры значительно проще флэш-памяти: они состоят из тонкой 50-нм плёнки, состоящей из двух слоёв - изолирующего диоксида титана и слоя, обеднённого кислородом. Плёнка расположена между двумя платиновыми 5-нм электродами. При подаче на электроды напряжения изменяется кристаллическая структура диоксида титана: благодаря диффузии кислорода его электрическое сопротивление увеличивается на несколько порядков (в тысячи раз). При этом после отключения тока изменения в ячейке сохраняются. Смена полярности подаваемого тока переключает состояние ячейки, причём, как утверждают в HP, число таких переключений не ограничено. На практике мемристор может принимать не только обычные для обычных чипов памяти два положения - 0 или 1, но и любые значения в промежутке от нуля до единицы, так что такой переключатель способен работать как в цифровом (дискретном), так и в аналоговом режимах. 
                Еще в апреле 2010 года в HP объявили о существенном прогрессе в исследованиях мемристоров: в лабораториях компании разработаны образцы ячеек со стороной 3 нм и скоростью переключения около одной наносекунды. Кроме того, учёным удалось создать трёхмерный массив таких элементов, способный выполнять логические операции и работающий аналогично синапсам - "сигнальным линиям" между нейронными клетками в мозгу человека. Скорость передачи сигнала по синапсу зависит от времени активации нейронов: чем меньше временной промежуток между активацией, тем быстрее передаётся сигнал по синапсу. Точно так же работает и массив мемристоров: при подаче тока с промежутками в 20 мс сопротивление мемристора вдвое меньше, чем при 40-мс промежутках. 
                Создание 3D-массивов мемристоров позволит размещать 20 Гбайт данных в объёме 1 см3. Уже изученные свойства мемристоров позволяют говорить о том, что на их основе можно создавать компьютеры принципиально новой архитектуры, по производительности значительно превышающие полупроводниковые.

                Прогрессивная в середине прошлого столетия архитектура сегодня уже не отвечает требованиям, предъявляемым к компьютерной технике: программы стали намного сложнее, а объёмы обрабатываемых данных выросли на порядки, если не в десятки порядков. Компьютер на базе мемристоров может стать существенным шагом вперёд, поскольку он способен моделировать даже работу человеческого мозга. По сравнению с современной техникой, энергопотребление мемристорных машин будет ничтожным, а вычислительная мощь просто гигантской. Становится возможным построение цепей, подобных нейронам и синапсам, в пределах кристаллов электронных чипов. Создание сложных нейронных сетей на электронном уровне позволяет, в свою очередь, реализовать такие функции, как самообучение, восприятие, память и логическое мышление. Эти функции являются весьма востребованными в самых различных областях, в областях автоматизации производств, при создании интеллектуальных самостоятельных роботов. 


Лицензия