Алгоритм - Учебный центр
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 2 из 139      1<< 1 2 3 4 5>> 139

Основы лазерной безопасности при ремонте.

Статья добавлена: 28.06.2018 Категория: Статьи

Основы лазерной безопасности при ремонте. Лазер – оптический квантовый генератор, а само слово является аббревиатурой слов английской фразы Light Amplification by Stimulated Emission of Radiation – усиление света в результате вынужденного усиления. Нам кажется, что свет (например, от лампы) непрерывен, но на самом деле он состоит из множества фотонов со случайной длиной волны и случайной фазой. Это приводит к тому, что излучение, образуемое этими фотонами, распространятся в разные стороны, в результате чего оно имеет незначительную интенсивность, убывающую в пространстве, и свет является “белым”, т.е. в нем присутствуют самые различные волны. К особенностям же лазерного излучения можно отнести его интенсивность, направленность, когерентность и узкий диапазон длин волн. 1. Интенсивность. Свет от обычной лампы рассеивается в большой области пространства, и его интенсивность убывает, по мере удаления от источника излучения. Лазерный же луч так сильно сфокусирован, что значительное количество фотонов одновременно попадает в незначительную по размерам точку. И поскольку сечение лазерного луча очень мало, в этой области концентрируется огромная энергия. Таким образом, даже незначительный по мощности источник света создает высочайшую плотность энергии в малом объеме пространства, а, значит, луч лазера обладает высокой интенсивностью. 2. Направленность. Направленность лазерного луча создается оптической системой, точнее сказать двумя зеркалам, образующими оптический канал. Чаще всего в лазерах имеется два зеркала: полностью отражающее и полупрозрачное, между которыми находится источник света и возбужденная среда. Лазерный луч проходит через возбужденную среду лазера, его амплитуда увеличивается при сохранении синфазности излучения, попадает на полностью отражающее зеркало и меняет свое направление на обратное. Отраженный луч снова проходит через возбужденную среду, еще больше усиливаясь. Далее попадает на полупрозрачное зеркало, и так как интенсивность луча пока еще незначительная, отражается от полупрозрачного зеркала, снова проходит через возбужденную среду и т.д. Когда луч будет достаточно усилен, и его мощность станет высокой, полупрозрачное зеркало пропускает луч наружу, после чего он может проходить значительные расстояния без особой потери энергии, так как лучи являются практически параллельными. Особенности лазерного излучения приводят к тому, что луч лазера по–особому воздействует на сетчатку человеческого глаза. Вся энергия лазерного луча фокусируется в одну точку, в то время как свет от обычного некогерентного источника воздействует на относительно большую площадь сетчатки. Поэтому источник лазерного излучения с мощностью в десяток милливатт может привести к разрушению сетчатки и полной потере зрения, в то время как свет от лампы мощность в сотню Ватт (в тысячу раз мощнее лазерного источника) спокойно переносится человеком. В современной электронной технике применяются в основном полупроводниковые лазеры. Их световой поток может быстро переключаться с высокой частотой без прекращения вынужденного излучения, что делает их пригодными и особенно удобными для применения в средствах связи, в средствах считывания информации и в печатающих устройствах. Все эти области применения лазеров характеризуются высокими частотами повторения световых импульсов. В принципе, лазеры применяются в самых различных отраслях человеческой деятельности: медицине, электронике, металлургии, телекоммуникациях, в военной области. Каждая область применения лазера накладывает свои отпечатки на требуемые характеристики и параметры лазерных излучателей. Ввиду того, что физические особенности лазерного излучения приводят к возникновению опасности получения человеком травм различной тяжести, разнообразные правительственные агентства, службы сертификации и санитарного контроля разрабатывают системы классификации и нормативы безопасности при работе с лазерами. Наиболее известной и чаще используемой является классификация, состоящая из четырех классов безопасности лазерных систем.

Входные цепи импульсных источников питания.

Статья добавлена: 28.06.2018 Категория: Статьи

Входные цепи импульсных источников питания. Один из недостатков импульсных преобразователей энергии это то, что они являются источником высокочастотных помех, проникающих в первичную сеть переменного тока. Это, в свою очередь, может приводить к нестабильной работе другого оборудования, подключенного к той же фазе первичной сети, что и импульсный источник. В связи с этим, абсолютно любой блок питания должен иметь в своем составе входные помехоподавляющие цепи, обеспечивающие его защиту от помех из первичной сети, а также защиту первичной сети от высокочастотных помех импульсного источника. Кроме того, эти цепи могут выполнять функции по защите от высоких напряжений и больших токов. Переменный ток сети на первом этапе преобразования должен быть выпрямлен с помощью диодного моста. На этот диодный мост переменный ток подается через сетевой выключатель, сетевой предохранитель, терморезистор с отрицательным температурным коэффициентом сопротивления (ТКС) и помехоподавляющий фильтр. В подавляющем большинстве источников питания построение входных цепей одинаково, и такая типовая схема входных цепей приводится на рис.1.

PSI# - процессорный сигнал индикатора статуса питания.

Статья добавлена: 28.06.2018 Категория: Статьи

PSI# - процессорный сигнал индикатора статуса питания. В основу новой схемотехники модулей питания процессора положен принцип динамического выбора числа активных фаз в зависимости от потребностей процессора. Задача измерения тока, потребляемого процессором, возложена на ШИМ-контроллер (или на внешнюю схему – по желанию разработчиков). Регулировка подачи питания на процессор производится по сигналу PSI (Power Status Indicator) процессора, который генерируется, когда процессор находится в режиме Deeper Sleep. Сигнал о величине тока поступает на процессор, а тот в свою очередь определяет, в каком состоянии находится – в стандартном или с низкой нагрузкой. В случае низкой нагрузки сигнал PSI # поступает обратно на ШИМ-контроллер, который может отключить часть фаз за ненадобностью и тем самым снизить энергопотребление всей схемы питания. Сигнал PSI позволяет повысить эффективность регулятора напряжения питания процессора и улучшить тем самым энергоэкономичность компьютеров. PSI# - процессорный сигнал индикатора статуса питания. Этот сигнал устанавливается, когда текущее максимально допустимое потребление ядра процессора меньше 20А. Установка этого сигнала индицирует, что контроллер VR не требует в данный момент значения ICC более, чем 20 А, и VR-контроллер может использовать эту информацию, чтобы передать ее в более эффективные рабочие (оперативные) точки. Этот сигнал будет сброшен менее чем через 3,3 мкс до того, как текущее потребление превысит 20 А. Минимальное время установки и сброса сигнала – 1 BCLK. Индикатор состояния мощности (сигнал PSI) используется для повышения экономичности работы VRM-модуля при малой загрузке. Разработчики всегда ищут компромисс между числом фаз (транзисторных каскадов) и стоимостью реализации. В основу новой схемотехники модулей питания процессора положен принцип динамического выбора числа активных фаз в зависимости от потребностей процессора. Задача измерения тока, потребляемого процессором, возложена на ШИМ-контроллер (или на внешнюю схему – по желанию разработчиков).

Применение органических светодиодов (OLED).

Статья добавлена: 25.06.2018 Категория: Статьи

Применение органических светодиодов (OLED). OLED или Organic Light Emitting Diode (органический светодиод) – одна из самых перспективных разработок, применение которой найдётся везде: просто для освещения, для создания собственно дисплеев или, например, подсветки LCD-панелей. LED-элементы потребляют очень мало электроэнергии. LED-дисплеями уже сейчас оснащаются многие мобильные телефоны, карманные медиаплееры, ноутбуки/нетбуки, выпускаются и OLED-телевизоры. Преимуществ у OLED-технологии много. Любой OLED-дисплей обеспечивает невероятные контрастность и яркость при меньших, чем у LCD или «плазмы» энергозатратах (данным производителей, обеспечивается контрастность 1000000:1 и выше. OLED-дисплей намного тоньше любого, даже самого современного LCD (толщина OLED составляет считанные миллиметры). Это позволяет создавать тончайшие панели, особое значение данная характеристика имеет для мобильных телефонов и других гаджетов, для которых компактность – первое требование. Даже в том случае, когда OLED играет вспомогательную роль и используется с LCD в качестве элемента подсветки, он положительно влияет на качество изображения. В отличие от обычных ламп, LED-панель обеспечивает абсолютно равномерную подсветку экрана на всей площади. Но пока цена OLED- экранов очень высока, и хотя они очень тонкие, однако никуда не делась потребность во вспомогательном аппаратном обеспечении, поэтому выпускается они на подставке, в которую и спрятана вся вспомогательная электроника. Себестоимость OLED-дисплеев, особенно дисплеев большого размера, очень высока (пока OLED на правах прогрессивной новинки и пользуется большой популярностью снижения цены не ожидается). Долгое время фирмам не удавалось создать панель с большим ресурсом – срок службы среднестатистического OLED заметно уступал сроку службы, например, сопоставимого LCD (но проблема уже решается, и довольно успешно). Сейчас уже никто не сомневается, что за OLED – большое будущее.

Средства для очистки и полировки фотобарабана.

Статья добавлена: 25.06.2018 Категория: Статьи

Средства для очистки и полировки фотобарабана. Специалисту ремонтирующему копировальную технику, и просто использующему ее, важно знать, что органический фоторецептор категорически запрещается очищать какими бы то ни было веществами, не предназначенными для этого специально. Спирт, и тем более ацетон, попавшие на покрытие фотобарабана даже в малых количествах, способны необратимо повредить его, оставив ничем не удаляемые пятна, которые на копиях будут проявляться в виде совершенно белых участков или областей пониженной контрастности изображения. Иногда с подобными повреждениями можно справиться путем полировки фотобарабана, однако в большом количестве случаев барабан придется заменить на новый. Пользователям вообще запрещается прикасаться к поверхности фотобарабана или пытаться очищать ее. Специалистам рекомендуется не очень существенные загрязнения удалять с помощью мягкой сухой ткани, совершенно чистой или посыпанной новым, неотработанным тонером. При этом тряпка должна двигаться в направлении, перпендикулярном направлению вращения барабана, лишь слегка нажимая на его поверхность. Для устранения более серьезных загрязнений, а также небольших царапин на фоторецепторном слое можно пользоваться специальными пастами для полировки органических барабанов. Желательно применять только те пасты, на упаковке которых прямо указано, что они подходят для барабанов конкретных моделей копировальных аппаратов. На втором месте стоят пасты, выпускаемые для техники определенных фирм-изготовителей: если на тюбике с пастой написано, что она может использоваться с техникой Sharp, то, вероятнее всего, паста подойдет практически для всех аппаратов этой фирмы. Фоторецепторы очень многих моде¬лей абсолютно идентичны по своим химико-физическим свойствам и, как правило, с совместимостью здесь не возникает особых проблем. К примеру, для многих копировальных аппаратов подходит полировочная суспензия, выпускаемая под торговым знаком ««Pride, Quality, Consistence» (логотип -шесть разноцветных треугольников) и предназначенная для лазерных принтеров EPL/HP Illsi. Между тем следует помнить, что некоторые экзотические фотобарабаны или требуют специального состава полировочного крема, или вовсе не переносят никаких средств полировки и очистки. В этом случае любая попытка применить другие составы может привести к окончательной потере их рабочих свойств. Обычно это не очень страшно, по¬скольку к полировке фотобарабана прибегают как к последнему средству, призванному хоть немного продлить срок службы детали, уже отработавшей свой ресурс. Полировку следует производить следующим образом:

Источник питания принтера (пример).

Статья добавлена: 25.06.2018 Категория: Статьи

Источник питания принтера (пример). Источник питания представляет собой импульсный источник, преобразователь (инвертор) которого выполнен по однотактной схеме (рис.1). Входные цепи источника обеспечивают защиту от помех, токовых бросков и бросков входного напряжения, подаваемого на разъем INL101. В составе входных цепей можно отметить кнопку включения питания SW101, токовый предохранитель FU101, варистор VZ101 (470В) для защиты от повышенного входного напряжения и терморезистор TH1 с отрицательным ТКС для защиты диодного моста от токового броска в момент включения. Входные цепи имеют типовое для импульсного источника питания построение. Выпрямление переменного тока сети осуществляет диодный мост D101.Импульсный преобразователь, работающий по методу широтно-импульсной модуляции (ШИМ) представлен интегральной микросхемой IC501. Эта микросхема включает в себя и ШИМ-контроллер и мощный ключевой транзистор, коммутирующий первичную обмотку (конт.3 - конт.4) импульсного трансформатора. Запуск микросхемы осуществляется от выпрямленного напряжения, снимаемого с диодного моста через резистивный делитель R542, R541, R544, R545, R540, R501. Питание микросхемы в рабочем режиме осуществляется цепью подпитки: R505, D502, C503. В качестве источника энергии цепь подпитки использует импульсную ЭДС, снимаемую с вторичной обмотки трансформатора (конт.1 – конт.2).Токовая защита преобразователя осуществляется токовым датчиком R508, сигнал от которого подается на конт.11 (OC) микросхемы IC501.Стабилизация выходных напряжений осуществляется методом ШИМ по сигналу обратной связи, подаваемому на конт.5 (CONT) микросхемы IC501. Сигнал обратной связи передается через оптопару PC501, ток светодиода которой управляется микросхемой регулируемого стабилизатора IC504. Сигнал обратной связи пропорционален выходным напряжениям +5В и +24В, которые подаются на вход IC504.Блокировка микросхемы ШИМ-контроллера IC501 может осуществляться подачей сигнала “высокого” уровня на ее входной конт.7 (CD). Сигналом на этом контакте управляет оптопара защиты от аварийных режимов источника питания – PC502. Блокировка осуществляется в трех случаях: - превышение напряжения в канале +5В (стабилитрон ZD502); - превышение напряжения в канале +24В (стабилитрон ZD505); - превышение тока в канале +5В. Цепь защиты от превышения тока в канале +5В можно еще назвать цепью защиты от короткого замыкания. Для определения величины тока канала +5В используются токовые датчики – R514 и R513. Компаратор тока – микросхема IC302-1 (типа HA17324), управляющая транзистором Q501.

Принципы организации обмена с внешними устройствами компьютера (программно-управляемый ввод/вывод и DMA).

Статья добавлена: 25.06.2018 Категория: Статьи

Принципы организации обмена с внешними устройствами компьютера (программно-управляемый ввод/вывод и DMA). Внешние устройства подключаются к системному интерфейсу через специальные устройства - контроллеры (адаптеры). Каждый контроллер имеет в своем составе ряд программно-доступных регистров (как минимум имеет хотя бы регистр данных, регистр состояния и регистр управления). Каждый контроллер имеет свой набор команд. Получив, через свои регистры, команду от выполняющего программу ввода-вывода процессора, контроллер отрабатывает команду автономно, управляя внешним устройством через "малый" интерфейс между устройством и контроллером. Контроллер, отрабатывая принятую от процессора команду, пересылает во внешнее устройство свои команды, данные, и читает из устройства состояния. Кроме того, контроллер может выполнять ряд вспомогательных аппаратных функций, инициируемых аппаратными сигналами, или записью управляющей информации в его программно-доступный регистр (например, «сброс» по сигналу RESET, или включение процесса самодиагностики жесткого диска). Существуют простые контроллеры и более сложные (интеллектуальные) контроллеры, выполняющие более сложные аппаратные функции и команды. Процессор управляет внешним устройством, выполняя соответствующую программу ввода/вывода, где он с помощью команд IN, OUT (чтение порта, запись в порт) осуществляет доступ к программно-доступным регистрам контроллера. Например, в регистр управления процессор записывает команду, из регистра состояния читает информацию о состоянии устройства и контроллера, в регистр данных записывает выводимые на устройство данные, или читает из регистра данных считываемую с устройства информацию. Возможны два способа организации программного обмена с внешними устройствами:

Операционная система, операционная среда.

Статья добавлена: 25.06.2018 Категория: Статьи

Операционная система, операционная среда. К системному программному обеспечению относят такие программы, которые являются общими, без которых невозможно выполнение или создание других программ, операционные системы (ОС) относят к этим программам. Системное программное обеспечение – это те программы и комплексы программ, которые являются общими для всех пользователей технически средств компьютера. Системное программное обеспечение делится на пять основных групп: - операционные системы; - системы управления файлами; - интерфейсные оболочки, которые обеспечивают взаимодействие пользователя с операционной системой, и различные программные среды; - системы программирования; - утилиты. На сегодняшний день операционная система представляет собой комплекс системных управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между аппаратурой компьютера и пользователем с его задачами, а с другой стороны, предназначены для наиболее эффективного расходования ресурсов вычислительной системы и организации надежных вычислений. Любой программный продукт работает под управлением ОС. Ни один из компонентов программного обеспечения, за исключением самой ОС, не имеет непосредственного доступа к аппаратуре компьютера. Пользователи со своими программами также взаимодействуют через интерфейс ОС. Любые команды, прежде чем попасть в прикладную программу, сначала проходят через ОС. Основные функции операционных систем:

Профилактические мероприятия продляют срок безотказной работы компьютера.

Статья добавлена: 25.06.2018 Категория: Статьи

Профилактические мероприятия продляют срок безотказной работы компьютера. Большинство профилактических мероприятий сводятся, главным образом, к периодической чистке как всей системы, так и отдельных ее компонентов. Чистка и смазка всех основных элементов, переустановке микросхем, перестыковка разъемов, а также выполнение работ по предупреждению искажений файлов и системной информации, обеспечивающей поддержку файловых систем, переформатирование жестких дисков с целью исключения дефектных участков должны выполняться периодически (по графику), и как реакция на отказы или сбои оборудования, или в ответ на сообщения об ошибках со стороны операционной системы. Существуют общие профилактические мероприятия и меры, которые направлены на защиту компьютера от внешних неблагоприятных воздействий и позволяют обеспечить безопасность компьютера. Установка защитных устройств в сети электропитания, поддержании должного уровня чистоты и требуемого диапазона температуры в помещении, где установлен компьютер, уменьшении уровня внешних помех, вибрации и т.п. обычно относят к пассивным профилактическим мерам, о которых тоже не следует забывать, и которые не менее важны чем активные профилактических мероприятия. Насколько часто вам придется выполнять активное профилактическое обслуживание компьютера, зависит от состояния окружающей среды и качества компонентов системы. Если компьютер установлен, например, в механическом цехе завода, то, возможно, вам придется чистить его раз в квартал или чаще, а чистка компьютеров, установленных в бухгалтерии, офисе, обычно осуществляется раз в два года. Но если после нескольких месяцев эксплуатации, вскрыв, вы обнаружите в компьютере слой пыли, то время между профилактическими работами придется сократить.

Структурная организация операционных систем (ОС).

Статья добавлена: 22.06.2018 Категория: Статьи

Структурная организация операционных систем (ОС). Любая сложная система должна иметь понятную и рациональную структуру, то есть разделяться на части - модули, имеющие вполне законченное функциональное назначение с четко оговоренными правилами взаимодействия. Ясное понимание роли каждого отдельного модуля существенно упрощает работу по модификации и развитию системы. Напротив, сложную систему без хорошей структуры чаще проще разработать заново, чем модернизировать. Функциональная сложность операционной системы неизбежно приводит к сложности ее архитектуры, под которой понимают структурную организацию ОС на основе различных программных модулей. Обычно в состав ОС входят исполняемые и объектные модули стандартных для данной ОС форматов, библиотеки разных типов, модули исходного текста программ, программные модули специального формата (например, загрузчик ОС, драйверы ввода-вывода), конфигурационные файлы, файлы документации, модули справочной системы и т. д. Большинство современных операционных систем представляют собой хорошо структурированные модульные системы, способные к развитию, расширению и переносу на новые платформы. Какой-либо единой архитектуры ОС не существует, но существуют универсальные подходы к структурированию ОС. Наиболее общим подходом к структуризации операционной системы является разделение всех ее модулей на две группы: - ядро (т. е. модули, выполняющие основные функции ОС); - модули, выполняющие вспомогательные функции ОС. Модули ядра выполняют такие базовые функции ОС, как управление процессами, памятью, устройствами ввода-вывода и т. п. Ядро составляет сердцевину операционной системы, без него ОС является полностью неработоспособной и не сможет выполнить ни одну из своих функций.

Управление питанием шин PCI Express.

Статья добавлена: 22.06.2018 Категория: Статьи

Управление питанием шин PCI Express. Шина PCI Express активно используется разработчиками видеосистем компьютеров, SSD-дисков, количество используемых магистралей шин PCI Express постоянно растет и возникает проблема экономии энергопотребления и в этой области (особенно в мобильных компьютерах). В шине PCI Express активно поддерживаются режимы пониженного энергопотребления. Линия PCI Express может «отключаться», если она не используется в данный момент для передачи данных: отключаются линии передачи тактового сигнала, линии приема и передачи данных (и вместе с ними могут отключаться и приемник и передатчик в PCI Express контроллере), с устройства может быть снято питание — целиком (устройство «логически выключено») или частично (остается маломощное дежурное напряжение питания. Функционирует «линия пробуждения» WAKE#, по которой передается сигнал на перевод устройства в нормальный рабочий режим). Если шина состоит из нескольких линий, то при небольшой загрузке шины можно отключать ненужные в данный момент линии (например, использовать PCI Express x4 как x1, а три линии выключить). Переключение в «энергосберегающий» режим при этом может потребовать как само устройство PCI Express, так и «система» в целом — скажем, при переходе в «спящий режим» (hibernate). В «десктопных» вариантах шины PCI Express энергосберегающие режимы являются необязательными (то есть могут быть реализованы, а могут и не быть), но в мобильных описанные возможности являются обязательными. Рассмотрим функции и протоколы управления питанием PCI Express механизма PCI Express-PM. PCI Express-PM предоставляет следующие сервисы:

Проверка исправности полевого транзистора.

Статья добавлена: 22.06.2018 Категория: Статьи

Проверка исправности полевого транзистора. Рассмотрим основные характеристики N-канального полевого транзистора (ПТ). Различных параметров важных, и не очень, у полевых транзисторов достаточно много. Но с практической точки зрения ограничимся рассмотрением лишь необходимых нам параметров: - Vds - Drain to Source Voltage - максимальное напряжение сток-исток; - Vgs - Gate to Source Voltage - максимальное напряжение затвор-исток; - Id - Drain Current - максимальный ток стока; - Vgs(th) - Gate to Source Threshold Voltage - пороговое напряжение затвор-исток при котором начинает открываться переход сток-исток; - Rds(on) - Drain to Source On Resistance - сопротивление перехода сток-исток в открытом состоянии; - Q(tot) - Total Gate Charge – полный заряд затвора. Параметр Rds(on) может указываться при разных напряжениях затвор-исток, как правило это 10 и 4.5 вольта, это важная особенность которую нужно обязательно учитывать. Максимальное напряжение "сток-исток", Vds - максимальное мгновенное рабочее напряжение. Продолжительный ток стока, Id - максимальный ток, который может проводить MOSFET, обусловленный температурой перехода. Максимальный импульсный ток стока, Idm - больше, чем Id и определен для импульса заданной длительности и рабочего цикла. Максимальное напряжение "затвор-исток", Vgs - максимальное напряжение, которое может быть приложено между затвором и истоком без повреждения изоляции затвора. Кроме того, имеют место: пороговое напряжение затвора, Vt {Vth, Vgs}; Vt - минимальное напряжение затвора, при котором транзистор включается. При проверке ПТ чаще всего пользуются обычным стрелочным омметром (предел х100). Для прозвонки подойдет обычный стрелочный омметр (но, цифровым прибором в режиме контроля р-n-переходов это делать более удобно). При проверке сопротивления между истоком и стоком надо обязательно не забыть снять заряд с затвора после предыдущих измерений (кратковременно замкните его с истоком), а то можно получить неповторяющийся результат.

Стр. 2 из 139      1<< 1 2 3 4 5>> 139

Лицензия