Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи

Стр. 206 из 210      1<< 203 204 205 206 207 208 209>> 210

Haswell, ультрабуки, ультрапортативные ноутбуки-трансформеры, планшеты.

Статья добавлена: 28.08.2017 Категория: Статьи

Haswell, ультрабуки, ультрапортативные ноутбуки-трансформеры, планшеты. «Увлекающиеся практикой без науки — словно кормчий, ступающий на корабль без руля или компаса; он никогда не уверен, куда плывет. Всегда практика должна быть воздвигнута на хорошей теории…» (Леонардо да Винчи). Intel не намерена продолжать активно бороться за честь традиционных и привычных многим систем, а вместо этого она хочет заниматься внесением изменений в архитектуру x86 и имеющиеся продукты с тем, чтобы приспособить их для тех классов мобильных устройств, которые находятся сейчас на пике популярности. Отчасти этой цели служат начавшиеся коренные преобразования в хозяйстве Atom: активное продвижение процессоров этого класса в смартфоны и планшеты, а также подготовка новой микроархитектуры Silvermont. Но параллельно метаморфозы будут происходить и с процессорной линейкой Core, которая по замыслу разработчиков должна стать ещё более мобильной. И Haswell — хотя уже не первая, но, наверное, самая заметная веха на этом пути. Haswell в первую очередь нацеливается на ультрабуки и ультрапортативные ноутбуки-трансформеры, которые легким движением руки превращаются в планшеты. И это как нельзя лучше отражает ту цель, которая стояла перед разработчиками новой микроархитектуры. Если на этапе создания микроархитектур Sandy Bridge и Ivy Bridge инженеры работали над дизайном процессоров с целевым энергопотреблением 35–45 Вт, в то время как остальные варианты получались путём варьирования числа ядер, частоты и напряжения, то с Haswell требования по потреблению были ещё более ужесточены от 15 до 20 Вт. Таким образом, Haswell — ярко выраженная ультрамобильная микроархитектура, стоящая по уровню производительности на ступень выше Atom. Что же до десктопных модификаций Haswell, то это для Intel — побочный продукт. меры, предпринятые Intel для снижения энергопотребления, позволяют компании значительно расширить спектр предлагаемых энергоэффективных процессоров Core. В мобильном сегменте ожидается появление обширной и включающей порядка двух десятков наименований U-серии, с характерным расчётным тепловыделением порядка 15 Вт. Кроме того, нас ожидает и Y-серия с тепловыделением на уровне 6–7 Вт. Эти цифры кажутся особенно впечатляющими, если принять во внимание, что речь идёт о тепловыделении сборки, включающей помимо процессорного ядра и кристалл набора логики.

Проверка полевых транзисторов (MOSFET-транзисторов).

Статья добавлена: 28.08.2017 Категория: Статьи

Проверка полевых транзисторов (MOSFET-транзисторов). В современной электронной аппаратуре, в блоках питания, мониторах, системных платах ПК и другой аппаратуре все чаще находят применение полевые транзисторы. При проведении ремонта мы очень часто сталкивается с необходимостью проверки исправности мощных полевых транзисторов. Полевые транзисторы (MOSFET-транзисторы). Полевые транзисторы (ПТ), благодаря ряду уникальных параметров, в том числе высокому входному сопротивлению, находят широкое применение в блоках питания ПК, телевизоров, мониторов, видеомагнитофонов и другой радиоэлектронной аппаратуры. В качестве электронного ключа импульсных преобразователей напряжения питания компонентов материнских плат всегда используется пара полевых n-канальных МОП-транзисторов (MOSFET-транзисторы). Обозначение этого типа транзисторов показано на рис. 1 (для сокращения числа внешних компонентов в транзистор может быть встроен мощный высокочастотный демпферный диод). MOSFET - это аббревиатура от английского словосочетания Metal-Oxide-Semiconductor Field Effect Transistor (Металл- Оксидные Полупроводниковые Полевые Транзисторы). Данный класс транзисторов отличается, прежде всего, минимальной мощностью управления при значительной выходной мощности (сотни ватт). В открытом состоянии ПТ имеют чрезвычайно малые значения сопротивления (десятые доли Ома при выходном токе в десятки ампер), а следовательно, минимальную мощность, выделяющуюся на транзисторе в виде тепла. К неоспоримым преимуществам MOSFET транзисторов перед биполярными можно отнести следующие: - минимальная мощность управления и большой коэффициент усиления по току обеспечивает простоту схем управления (есть даже разновидность MOSFET, управляемых логическими уровнями); - большая скорость переключения (при этом минимальны задержки выключения, обеспечивается широкая область безопасной работы); - возможность простого параллельного включения транзисторов для увеличения выходной мощности; - устойчивость транзисторов к большим импульсам напряжения (dv/dt). Поэтому данные приборы находят широкое применение и в устройствах управления мощной нагрузкой, импульсных источниках питания (до 1000 В). MOSFET с N-каналом наиболее популярны для коммутации силовых цепей. Напряжение управления или напряжение, приложенное между затвором и истоком для включения MOSFET, должно превышать порог UT 4В, фактически необходимо 10-12В для надежного включения MOSFET. Снижение напряжения управления до нижнего порога UT приведет к выключению MOSFET. Силовые MOSFET выпускают различные производители: - HEXFET (фирма NATIONAL); - VMOS (фирма PHILLIPS); - SIPMOS (фирма SIEMENS). При ремонте аппаратов, в которых применены полевые транзисторы, у ремонтников очень часто возникает задача проверки целостности и работоспособности этих транзисторов. Чаще всего приходится иметь дело с вышедшими из строя мощными полевыми транзисторами импульсных блоков питания.

Что такое ACPI (Advanced Configuration and Power Interface)?

Статья добавлена: 28.08.2017 Категория: Статьи

Что такое ACPI (Advanced Configuration and Power Interface)? ACPI расшифровывается как Advanced Configuration and Power Interface - расширенный интерфейс конфигурирования компьютера и управления питанием. ACPI - та основа, вокруг которого построен любой современный компьютер на аппаратном уровне. В системе с ACPI именно этот свод стандартов и правил используется для конфигурирования и работы аппаратных средств. Например, для назначения прерываний и ресурсов устройствам на современных шинах, для получения информации о работе устройств, для работы дополнительных "энергосберегающих" кнопок и датчиков. Современные компьютеры снабжаются дополнительным оборудованием, которое позволяет повысить надежность системы за счет постоянного оперативного контроля за состоянием ее наиболее важных компонентов. Процессоры, например, оборудованы термодатчиком (термодиод на кристалле ядра), который связан с программируемым устройством контроля температуры. Это устройство имеет аналого-цифровой преобразователь, калибруемый по термодиоду конкретного процессора на этапе тестирования картриджа. Константа настройки термометра заносится в PIROM. Устройство термоконтроля программируется - задается частота преобразований и пороги температуры, по достижении которых вырабатывается сигнал прерывания. Для взаимодействия с PIROM, Scratch EEPROM и устройством термоконтроля процессор имеет дополнительную последовательную шину SMBus (System Management Bus), основанную на интерфейсе I2C. Все датчики и watchdogs общаются с системой через SMBus. Попытка нескольких устройств одновременно обратится к ней, способна привести к длительным задержкам, или повреждению передаваемых данных что, в свою очередь, может привести к неправильной интерпретации этих данных системой. ACPI предусматривает синхронизацию доступа к SMBus, что предотвращает подобную ситуацию. Процессоры Xeon имеют новые средства хранения системной информации. Постоянная (только для чтения) память процессорной информации PIROM (Processor Information ROM) хранит такие данные, как электрические спецификации ядра процессора и кэш-памяти (диапазоны частот и питающих напряжений), S-спецификацию и серийный 64-битный номер процессора. По инструкции идентификации CPUID такая информация недоступна. Энергонезависимая память Scratch EEPROM предназначена для занесения системной информации поставщиком процессора (или компьютера с этим процессором) и может быть защищена от последующей записи. Кроме контроля питания, ACPI предоставляет возможность контролировать и управлять температурой различных компонентов системы. Для этого используются датчики температуры, и так называемые тепловые зоны. ACPI предоставляет стандартный интерфейс для работы с вставленным контролёром. Этот контролёр управляет такими устройствами как, например, мышь и клавиатура. ACPI предоставляет стандартный интерфейс взаимодействия программного и аппаратного обеспечения с SMBus - System Management Bus Controller. Что, в свою очередь, позволяет OEM производителям предоставлять возможность ОС использовать особенности их продуктов в полной мере. Как уже упоминалось, ACPI предоставляет возможность гибко реагировать на изменения в состоянии системы. Но для того, что бы реагировать на состояние системы, необходимо это состояние знать. Поэтому спецификация ACPI охватывает, кроме всего прочего, и устройства которые позволяют следить за системой. Для управления и мониторинга системы, используются два вида объектов, это sensors (датчики) и watchdogs (если дословно, то сторожевые псы). Датчики представляют из себя устройства, которые замеряют какой либо физический параметр. Вообще то видов датчиков существует великое множество, и сфера их применения весьма обширна, но для мониторинга состояния ПК, в настоящее время, обычно используются датчики следующих видов: Thermal sensor - датчик температуры, соответственно, температуру он и измеряет. Fan sensor - датчик вентилятора, или кулера, измеряет скорость вращения вентилятора. Voltage sensor - датчик напряжения, измеряет напряжение электрического тока. Конечно же, далеко не полный перечень датчиков, которые используются на ПК, существуют и более экзотические устройства, например Chassis Intrusion Sensor - датчик который позволяет определить, вскрыт корпус или нет. Датчики делятся на два вида, числовые и основанные на статусе (status based). Числовой сенсор, снимает какое либо значение (температуру, частоту вращения вентилятора, и т.д.), и возвращает числовое значение. Исходя из природы измеряемого значения, такие сенсоры бывают числовыми и аналоговыми. Типичным числовым сенсором является счётчик оборотов вентилятора, который абсолютно точно может сказать, сколько оборотов за определённое время делает вентилятор. Типичным аналоговым сенсором можно назвать датчик температуры, у которого появляются такие понятия как регулярность снятия значения (для датчиков температуры обычно это 1 секунда), верхний и нижний пределы диапазона измеряемых значений, и разрешение, которое сообщает с какой точностью производятся измерения. Основанные на статусе сенсоры "видят" состояние устройства, и засекают изменение его статуса. К таким сенсорам относится, например, Chassis intrusion sensor, который сигнализирует о вскрытии корпуса. Минимально сенсор основанный на статусе может генерировать два различных бита (так называемый бинарный сенсор) которые имеют два значения (хорошо/плохо), максимально - до 32.

Функции сетевого адаптера.

Статья добавлена: 28.08.2017 Категория: Статьи

Функции сетевого адаптера. Cетевые адаптеры обеспечивают сопряжение компьютера и среды передачи информации с учетом принятого в данной сети протокола обмена информацией. Адаптер должен выполнять ряд функций, количество и суть которых во многом зависят от типа конкретной сети. Все функции сетевого адаптера можно разделить на две большие группы. Первая группа включает в себя функции сопряжения адаптера с компьютером (магистральные функции), а вторая - функции по организации обмена в сети (сетевые функции). Функции первой группы определяются интерфейсом компьютера, к которому подключается сетевой адаптер, и не отличаются большим разнообразием. Функции второй группы определяются типом сети и могут быть самыми различными в зависимости от типа сетевого кабеля, принятого протокола управления, топологии сети и т.д. Магистральные (канальные, шинные) функции сетевых адаптеров обеспечивают организацию их сопряжения с одной из локальных шин системного интерфейса персонального компьютера. Для процессора сетевой адаптер это обычный контроллер, соответствующий определенным стандартам, в котором имеется ряд прогрмммно-доступных регистров, каждый из которых имеет свое функциональное назначение. Процессор управляет любым контроллером через его программно-доступные регистры, записывая и читая информацию с помощью команд IN, OUT, INS, OUTS. Сетевой адаптер, как любой другой контроллер имеет свой набор команд. Получив от процессора, выполняющего программу сетевого взаимодействия, команду (через программно-доступный регистр или регистры), контроллер отрабатывает команду автономно, реализуя, в том числе, функции обмена по сетевому кабелю с другим сетевым адаптером или несколькими сетевыми адаптерами. Команда может вызвать в сетевом адаптере выполнение очень сложных преобразований информации по программам, выполняемым специализированным процессором, встроенным в плату сетевого адаптера. Кроме того, контроллер может выполнять ряд вспомогательных аппаратных функций инициируемых аппаратными сигналами или записью управляющей информации в его программно-доступный регистр, формировать сигнал запроса на обслуживание (прерывание). Некоторые сетевые адаптеры имеют в своем составе аппаратуру, позволяющую ему выполнять функции устройства, инициирующего операцию обмена на интерфейсе (Master). Сопряжение с компьютером возможно не только через системную магистраль, но и через внешние интерфейсы, например, через интерфейс USB. Низкая скорость передачи информации по этим интерфейсам не позволяет организовать эффективную работу сетевых адаптеров, для которых очень важна скорость обмена. Данные передаются из памяти компьютера в адаптер или из адаптера в память с помощью прямого доступа к памяти, или совместно используемой области памяти или программируемого ввода-вывода. К сетевым функциям адаптеров, относят функции, которые обеспечивают реализацию принятого в сети протокола обмена. Часть этих функций может выполняться как аппаратурой адаптера, так и программным обеспечением персонального компьютера (перенос части функций на программные средства позволяет упростить аппаратуру адаптера и существенно увеличить гибкость обмена, но ценой замедления работы). К основным сетевым функциям адаптера, относятся нижеследующие функции:

Платы управления второго уровня в лазерных принтерах

Статья добавлена: 28.08.2017 Категория: Статьи

Платы управления второго уровня в лазерных принтерах Лазерные принтеры, цифровые копиры, МФУ являясь сложными электромеханическими устройствами, снабжены набором механических и электронных узлов, датчиков, переключателей, сенсоров, соленоидов, которые управляют и обеспечивают контроль процесса работы аппарата, сообщают микроконтроллеру второго уровня о состоянии отдельных его узлов. Управляют всеми процессами в аппарате электронные компоненты, которые располагаются на печатных платах. Основой для построения главных плат управления второго уровня являются специализированные микро-ЭВМ называемые микроконтроллерами. Микроконтроллеры являются основой схем управления многих современных промышленных устройств и приборов.

Индукционный паяльник – идеальный ручной инструмент.

Статья добавлена: 28.08.2017 Категория: Статьи

Индукционный паяльник – идеальный ручной инструмент. С появлением индукционной паяльной системы эволюция ручного паяльного инструмента совершила большой скачок. Все дальнейшее развитие паяльника является лишь попытка фирм-изготовителей воспроизвести физический процесс, проходящий в индукционном инструменте, с помощью искусственных схем управления. Индукционный метод нагрева обеспечивает очень высокие характеристики инструмента, и он до сих пор остается непревзойденным. Индукционный метод, основанный на нагреве проводника переменным магнитным полем, давно и успешно применяется в промышленности. Примером такой паяльной системы может служить МХ-500, общий вид которой показан на рис. 1. Однако нагрев проводника переменным магнитным полем использовать в паяльнике стали сравнительно недавно. Первой применила индукционный метод американская компания ОК International (Oki), покрыв обычный медный наконечник слоем ферромагнетика и обмотав его проводом, подключенным к переменному напряжению, и все это было выполнено в виде единого картриджа (рис. 2). Наконечник нагревался до температуры, при которой ферромагнетик терял магнитные свойства (точка Кюри) после чего температура стабилизировалась в этой точке. Таким образом, был получен простой и надежный терморегулятор, работающий без схемы управления, только за счет законов физики (патент «Smart Heat» компании OKi). Кроме того, оказалось, что сразу после включения питания инструмент потреблял максимальную мощность 50 Вт, но, как только достигалась точка Кюри, мощность падала до 12 Вт, чего вполне хватало для поддержания холостого хода. При контакте с платой температура наконечника резко падала, и поскольку наконечник был крошечным и обладал очень маленькой теплоемкостью, то при этом мгновенно восстанавливались магнитные свойства ферромагнетика, и наконечник начинал интенсивно потреблять энергию из магнитного поля, быстро нагреваясь вместе с паяемым контактом. Чем массивнее был контакт, и чем сильнее отклонялась температура наконечника от точки Кюри, тем больше энергии потреблялось из магнитного по¬ля. Таким образом, инструмент сам регулировал мощность, необходимую для пайки каждого конкретно¬го контакта, и все это без традиционного широтно-импульсного модулятора, а только за счет за¬конов физики. Лучших условий для качественной и безопасной пайки нельзя было даже представить: начальная мощность инструмента 12 Вт (понятно, что 12-ваттным паяльником труд¬но что-либо перегреть). Кроме того, за счет пренебрежимо малой теплоемкости наконечника не происходит «термоудара», характерного для массивных наконечников, когда они касаются точки пайки. И, наконец, автоматический подбор мгновенной мощности обеспечивает нагрев как легких, так и теплоемких контактов приблизительно с одинаковой скоростью. Но главным достоинством нового инструмента является потрясающая теплоотдача. При мощности паяльника, не превышающей 50 Вт, наконечнике толщиной со стержень от шариковой ручки и весом в пол¬грамма инструмент легко паял такие толстые «многослойки» (рис. 3) на которых намертво «примерзали» даже более мощные паяльники классического исполнения. И это естественно, так как у индукционного паяльника нагреву подвергается сам наконечник, а нагревателя как такового нет, поэтому нет и теплопотерь при передаче энергии от нагревателя к наконечнику (КПД индукционного паяльника примерно вдвое выше, чем классического).

Источники питания для отлаживаемых устройств.

Статья добавлена: 28.08.2017 Категория: Статьи

Источники питания для отлаживаемых устройств. Во время ремонта и отладки различных устройств или узлов с питанием от постоянного источника тока, по целому ряду причин их питание приходится осуществлять от внешнего источника (например, необходимость защиты штатного источника от выхода из строя при первом подключении отремонтированного узла). Часто необходимо осуществить проверку работоспособности устройства во всем диапазоне питающих напряжений. Кроме того, гальваническая развязка от сети питания будет не лишней в целях свободного использования заземленных измерительных приборов во время работ. В связи с этим, лабораторные источники питания должны предусматривать возможность установки нужного напряжения и регулятор потребляемого тока, а многоканальные источники должны иметь триггерную защиту с одновременным отключением всех каналов. (гальваническую развязку обеспечивают все лабораторные источники питания). При выполнении большого объема тестовых работ удобнее блоки питания с программным управлением. При ремонте и тестировании блоков питания, работающих от сети переменного тока 220 ля предотвращения серьезных повреждений при некорректной работе исследуемых блоков питания предпочтительнее иметь не просто защиту по току, а возможность плавного пуска (наращивания напряжения от нуля до номинала с постоянным контролем потребляемого тока).

Рекомендации по ремонту источников питания персональных компьютеров.

Статья добавлена: 28.08.2017 Категория: Статьи

Рекомендации по ремонту источников питания персональных компьютеров. Практика показывает, из всех элементов системного блока персонального компьютера (ПК) наибольшее число отказов приходится на блоки питания. Наибольшее число отказов блоков питания обычно связано с «человеческим фактором». Поэтому перед первым включением источника питания обратите внимание на положение переключателя типа питающей сети (рекомендуется сразу адаптировать аппарат под нашу сеть, исключив (методом выпаивания) все элементы, влекущие возможность ошибочного включения источника). Всегда любой ремонт начинается с очень внимательного предварительного внешнего осмотра ремонтируемого объекта. Во время пробных включений источника питания (во время ремонта и после проведения его ремонта) рекомендуется вместо предохранителя включить лампу накаливания на 250В/100Вт. Этот прием дает реальный шанс не пожечь силовые транзисторы высокочастотного преобразователя. Если при включении питания лампа будет гореть тускло, то можно установить предохранитель на место, а в случае яркого свечения лампы, питание необходимо выключить и продолжить поиски неисправности. Проявления неисправности блока питания, которые могут иметь место при неисправности блока питания, могут быть очевидными и неочевидные. Неочевидные причины неисправности - для определения неисправного эле¬мента требуют дополнительной диагностики системы, т. к. явно не проявляют себя, но тем не менее они влияют на работоспособность источника питания. Например, мы видим ошибки системы, которые не указывают на неисправность блока питания: - различного рода ошибки и зависания при включении электропитания; - неожиданная перезагрузка системы и периодические зависания во время обычной работы; - хаотически возникающие ошибки четности данных и другие ошибки оперативной памяти; - одновременная остановка жесткого диска и вентилятора, перегрев компьютера из-за выхода из строя вентилятора (из-за того, что нет +12 В); - перезагрузка системы при незначительном снижении напряжения сети 220В; - «удары» электрического тока во время прикосновения рукой к корпусу компьютера или к разъемам; - небольшие статические разряды, нарушающие работу сети. - ранняя подача сигнала «Питание в норме» (из-за неисправности в цепи формирования этого сигнала) может приводить к искажениям CMOS-памяти (наиболее часто встречающиеся типовые неисправности, непосредственно связанные с нарушением работоспособности источника питания системного блока ПК см. в табл. 1). Выходные напряжения желательно проверять цифровым мультиметром, обеспечивающим необходимую точность измерений.

Платы управления второго уровня в цифровых копирах и МФУ

Статья добавлена: 28.08.2017 Категория: Статьи

Платы управления второго уровня в цифровых копирах и МФУ Лазерные принтеры, цифровые копиры, МФУ являясь сложными элект­ромеханическими устройствами, снабжены набором ме­ханических и электронных узлов, датчиков, переключателей, сенсоров, соленоидов, которые управляют и обеспечивают контроль процесса работы аппарата, сообщают микроконтроллеру второго уровня о состоянии отдельных его узлов. Управляют всеми процессами в аппарате электронные компо­ненты, которые располагаются на печатных платах. Основой для построения главных плат управления второго уровня являются специализированные микро-ЭВМ называемые микроконтроллерами. Микроконтроллеры являются основой схем управления многих современных промышленных уст­ройств и приборов.

Проблемы спасения ценных файлов с современных жестких дисков.

Статья добавлена: 28.08.2017 Категория: Статьи

Проблемы спасения ценных файлов с современных жестких дисков. Сравнительно недавно жесткие диски стоили достаточно дорого, и был «экономический» интерес в их ремонте. На плате электроники использовали целую россыпь микросхем с низкой степенью интеграции и серийные комплектующие, над которыми имело смысл поработать с осциллографом, выискивая неисправный элемент. Но затем степень интеграции начала стремительно нарастать, производители перешли на заказные чипы, а цены на винчестеры упали, но сохранился большой интерес к восстановлению данных. Специалисты-профессионалы по всему миру восстанавливают тысячи гигабайт ценной информации. Для выполнения этой работы каждому из них потребовалось несколько лет, чтоб изучить стандарты на накопители, их устройство, разобраться в структуре файловых систем, провести огромное количество инженерных исследований, написать программы и создать оборудование (хорошо если запорчена только информация, а аппаратная часть диска исправна, но достаточно часто неисправна и она). Средства для восстановления служебной информации файловых систем и спасения ценных файлов обычно требуют больших материальных затрат, но если есть необходимость и желание, то можно создать свой программный инструмент практически без материальных затрат (потребуются лишь небольшие интеллектуальные усилия и знания служебных структур жестких дисков и файловых систем). Средства для написания специальных программ Написание специальных программ обычно осуществляют на ассемблере. Для упрощения процесса создания программ, в составе этих программ используют стандартные программы-функции BIOS. Программы BIOS являются низшим (физическим) уровнем стандартного ввода/вывода операционной системы. Программы "прошиты" в постоянном запоминающем устройстве ПЗУ BIOS (или флэш-памяти) и реализуют при своем выполнении функции управления внешними устройствами на физическом уровне. Ввод-вывод на физическом уровне осуществляется на уровне команд контроллеров внешних устройств, их программно-доступных регистров (с реализацией всех необходимых задержек и особенностей управления устройством). Программы BIOS подробно описаны (как говорят, хорошо документированы). По ним изданы справочники в печатном и электронном виде. Набор, отладку и запуск программ на выполнение, удобно осуществлять с помощью специальных программ - профотладчиков (Debug, AFD и др.). Программы-профотладчики ориентированы на специалистов по ремонту и диагностированию персональных компьютеров, и хотя с точки зрения программистов, они обладают скромными функциональными возможностями, но для написания и выполнения небольших специальных программ их возможностей вполне достаточно. Материнским платам с UEFI, не нужна BIOS, потому что в ней есть своя встроенная BIOS, называется — модуль поддержки совместимости. Поэтому те программы, которым для работы нужен был BIOS, спокойно могут работать и на компьютерах с UEFI. Необходимый минимум знаний Что же нужно знать для написания таких специальных программ? Необходимо следующее: - знать примерно 10-20 простых команд ассемблера из базового набора команд семейства микропроцессоров (8086-Pentium 4) и наиболее простые виды адресации, используемые для указания операндов в командах; - уметь пользоваться справочником по функциям BIOS; - знать назначение основных программно-доступных регистров процессора, используемых при программировании; - уметь пользоваться профотладчиком AFD (уметь использовать основные команды и функциональные клавиши); - знать общую архитектуру IBM PC подобных компьютеров.

Назначение и основные функции операционных систем.

Статья добавлена: 28.08.2017 Категория: Статьи

Назначение и основные функции операционных систем. К системному программному обеспечению относят такие программы, которые являются общими, без которых невозможно выполнение или создание других программ, операционные системы (ОС) относят к этим программам. Системное программное обеспечение – это те программы и комплексы программ, которые являются общими для всех пользователей технически средств компьютера. Системное программное обеспечение делится на пять основных групп: - операционные системы; - системы управления файлами; - интерфейсные оболочки, которые обеспечивают взаимодействие пользователя с операционной системой, и различные программные среды; - системы программирования; - утилиты. На сегодняшний день операционная система представляет собой комплекс системных управляющих и обрабатывающих программ, которые, с одной стороны, выступают как интерфейс между аппаратурой компьютера и пользователем с его задачами, а с другой стороны, предназначены для наиболее эффективного расходования ресурсов вычислительной системы и организации надежных вычислений. Любой программный продукт работает под управлением ОС. Ни один из компонентов программного обеспечения, за исключением самой ОС, не имеет непосредственного доступа к аппаратуре компьютера. Пользователи со своими программами также взаимодействуют через интерфейс ОС. Любые команды, прежде чем попасть в прикладную программу, сначала проходят через ОС. Основные функции ОС:

Диагностическая информация от программ BIOS (INT 13/xx).

Статья добавлена: 28.08.2017 Категория: Статьи

Диагностическая информация от программ BIOS (INT 13/xx). После выполнения программ BIOS (INT 13/xx) в регистре АН выдается код состояния (статус возврата). При успешном возврате: в регистре флагов процессора флажок CF= 0 в регистре АН=0. При ошибке: в регистре флагов процессора флажок CF=1. В регистре АН - значения кодов состояния/ошибки диска.

Стр. 206 из 210      1<< 203 204 205 206 207 208 209>> 210

Лицензия