Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Оптические межкомпонентные соединения.

Оптические межкомпонентные соединения.                      

Высокоскоростные межкомпонентные соединения являются одним из важнейших условий для построения быстродействующих перспективных вычислительных систем. Архитектуры Intel CMP позволяют ликвидировать узкие места и источники неэффективности, общие для других архитектур, но они могут столкнуться с новыми проблемами повышения производительности. Серьезной проблемой являются коммуникационные задержки при передаче данных между многочисленными ядрами, кэш-памятью и другими функциональными компонентами. Новым системам потребуются высокоскоростные межкомпонентные соединения, которые позволят значительно ускорить передачи данных и обеспечат эффективную полезную загрузку процессора. Intel не исключает использование усовершенствованных медных проводников, но в конечном счете видимо неизбежен переход на оптические межкомпонентные соединения, которые могут передавать данные со скоростью света

По мере увеличения степени интеграции полупроводниковых элементов и тактовой частоты микропроцессоров резко возрастают и требования к суммарной пропускной способности каналов обмена данными между микропроцессором и набором микросхем или между несколькими микропроцессорами на системной плате компьютера. Благодаря быстрому развитию микроэлектронных технологий через несколько лет, например, электронные устройства сопряжения, используемые, в частности, для подключения компьютеров к сети (трансиверы) на КМОП-транзисторах смогут работать на тактовых частотах порядка 14 ГГц, что вполне достаточно для поддержания скорости передачи данных на уровне 20 Гбит/с. Однако для применяемой в настоящее время технологии межкомпонентных соединений на базе медных проводников скорости в 15-20 Гбит/с - это предел, по причине неизбежного на сверхвысоких тактовых частотах ухудшения характеристик сигнала, рассеивания мощности и усиления негативного влияния электромагнитных помех.

Технология оптоволоконных соединений в последние годы стала все активнее применяться при развертывании коммуникационных сетей на коротких расстояниях, в частности, для соединения серверов в центрах обработки данных. В настоящее время оптические проводники уже готовы покорять сверхкороткие расстояния микроэлектронного мира. Благодаря гораздо более высокой пропускной способности по сравнению с металлическими проводниками, оптоволоконные соединения более эффективны для передачи данных от платы к плате, от микросхемы к микросхеме и от элемента к элементу внутри самой микросхемы. Однако стоимость технологии оптических соединений на сверхкоротких расстояниях существенно возрастает из-за использования компонентов на основе арсенида галлия и германия - более дорогостоящих, чем кремний. Кроме того, технология оптических проводников по сравнению с традиционной методикой требует более тонкой юстировки (т. е. взаимного выравнивания интегральных компонентов оптической подсистемы), что значительно усложняет разработку и производство оптического оборудования. Текущие исследования в данной области главным образом сосредоточены на повышении экономической эффективности технологии, особенно с точки зрения производства. Таким образом, можно утверждать, что оптические межкомпонентные соединения вполне смогут заменить электрические проводники (когда будет достигнут приемлемый показатель цена/производительность, а также более высокий уровень производственных возможностей).

Разработчики из Intel Components Research Lab объединили в рамках единого решения высокопроизводительные оптические компоненты (плоскостные лазеры с вертикальным резонатором VCSEL), и экономически эффективные и отвечающие промышленным стандартам технологии, основанные на КМОП-трансиверах с низким энергопотреблением и на стандартных методиках компоновки микропроцессоров. Разработчики уже продемонстрировали полнофункциональное устройство, обеспечивающее высочайшую скорость передачи данных (12-канальная линия связи, восемь каналов для передачи данных, объединенная в едином корпусе с параллельным оптическим КМОП-трансивером). Оптическая подсистема ввода-вывода базируется на оптоэлектронной интегральной микросборке в корпусе FCPGA. В числе других базовых компонентов устройства - плоскостные лазеры с вертикальным резонатором на базе арсенида галлия; кремниевые фотодиодные матрицы с трехслойной (P-I-N) структурой; массивы волноводов из специального полимера; многоканальные волоконно-оптические соединители; КМОП-микросхема трансивера. Эти компоненты устанавливаются методом перевернутых кристаллов (flip-chip) на верхней части органической подложки FCPGA-корпуса, обеспечивая параллельную оптическую передачу сигнала по типу "точка-точка". В течение сеанса передачи данных по оптической линии связи матрицы VCSEL-лазеров непосредственно модулируются информационными сигналами с простейшим бинарным кодированием (NRZ) и синхронизацией по источнику (source-synchronous clocking), формируемыми КМОП-генераторами. VCSEL-лазеры соединены матрицами многомодовых полимерных волноводов с подсистемой приема данных, состоящей из фотодиодных матриц на основе арсенида галлия и размещенных на том же кристалле трансимпедансных (управляемых током) усилителей напряжения. Интегрированные в КМОП-компонент схемы контроля обеспечивают тестирование оптических коммуникационных линий посредством определения частоты появления принятых при передаче сигнала ошибочных битов.

Кристалл оптоэлектронного трансивера (часть проекта разработки оптической подсистемы ввода-вывода для элементов сопряжения отдельных микросхем на уровне межкомпонентных соединений "кристалл-кристалл") выполнен на базе 0,18-мкм полупроводниковой технологии. Кристалл трансивера при размерах 3x3,25 мм занимает лишь третью часть общей площади интегральной микросборки и содержит все электрические схемы для реализации оптической линии связи. В числе основных модульных компонентов кристалла - 12 лазерных (VCSEL) генераторов оптического сигнала и 12 приемников сигнала в комбинации с трансимпедансными усилителями напряжения и ограничивающими усилителями; блок синхронизации; блок контроля с цепью сканирования. Два из 12 каналов несут управляющие сигналы для согласования оптоэлектронных микросхем с массивами волноводов. По двум другим каналам подаются синхроимпульсы. По остальным восьми передаются информационные сигналы вида PRBS NRZ (Pseudo Random Bit Sequence Non-Return-to-Zero, псевдослучайная битовая последовательность "без возврата к нулю"), предназначенные для управления матрицами VCSEL-лазеров. PRBS-данные формируются управляемым напряжением тактовым генератором, который, в свою очередь, управляет сдвиговым регистром линейной обратной связи. Схема фотодиодной матрицы приемника сигнала содержит трансимпедансные усилители напряжения (TIA) и ограничивающие усилители (LIA). Каждый TIA, снабженный резистором обратной связи, обладает допустимым суммарным емкостным сопротивлением не более 500 фемтофарад (фемто- обозначает 10-15). с учетом узлов пайки, электростатического заряда и паразитной емкости фотодиодов. Усилители TIA/LIA - это асимметричные системы с неинвертирующим выходом, формирующие опорный входной сигнал для регулировки тока фотодиода. Входной токовый сигнал на пути от фотодиодов к TIA проходит через три электронных каскада: дифференцирующие цепи, усилитель и преобразователь. LIA формирует дискретные логические уровни из аналогового сигнала, а устройство вывода формирует цифровой сигнал, выводимый за пределы кристалла.

С особой тщательностью разработчики подошли к проектированию внутренней архитектуры устройства. Необходимо было обеспечить совместимость с современной технологией компоновки и конструктивного исполнения микропроцессоров при поддержке интеграции дешевых и высокопроизводительных оптических компонентов. В результате была создана шестислойная органическая подложка размером 35x35 мм стандартной монтажной толщины, состоящая из слоев медных проводников, разделенных диэлектриком.

Проблема высокоскоростной связи заключается не только в материале межкомпонентных соединений, но и в их архитектуре. Например, архитектуры типа "кольцо" успешно проявляют себя в системах с числом ядер от восьми до 16. В дальнейшем потребуются новые архитектуры межкомпонентных соединений, способные поддерживать сотни ядер. Такие механизмы должны иметь способность к реконфигурированию, чтобы обслуживать изменяющиеся потребности обработки и конфигурации ядер. Архитектуры межкомпонентных соединений является важнейшей областью активных и всесторонних исследований Intel и ее партнеров в области высоких технологий.

Специалисты Intel полагают, что архитектура процессоров и платформ должна двигаться именно в направлении виртуализованной, реконфигурируемой архитектуры CMP с большим числом ядер, богатым набором встроенных функций, большим объемом внутрикристальной памяти и интеллектуальным микроядром. Именно эта эволюция архитектуры, позволит процессорам и платформам Intel в ближайшие годы стать основой для создания огромного количества качественно новых сверхэффективных интеллектуальных приложений.

 

 


Лицензия