Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Принципы построения инфракрасного интерфейса.

Принципы построения инфракрасного интерфейса.

 

Устройство инфракрасного интерфейса (рис. 1) подразделяется на два основных блока: преобразователь (модули приемника-детектора и диода с управляющей электроникой) и кодер-декодер. Блоки обмениваются данными по электрическому интерфейсу, в котором они в том же виде транслируются через оптическое соединение, за исключением того, что здесь информация пакуется в кадры простого формата – данные передаются 10-битными символами, с 8 битами данных, одним старт-битом в начале и одним стоп-битом в конце кадра.

Сам порт IrDA (рис. 2) основан на архитектуре коммуникационного СОМ-порта PC, который использует универсальный асинхронный приемо-передатчик UART (Universal Asynchronous Receiver Transmitter) и работает со скоростью передачи данных 2400–115200 bps. ИК-портом оснащены практически все современные портативные РС, иногда окно ИК-передатчика можно встретить и на корпусе настольного компьютера. Для реализации инфракрасного интерфейса (кроме, естественно, самой схемы UART, которая реализует COM-порт), нужна микросхема приемопередатчика, например, серии CS8130. Этот прибор является интерфейсом между блоком UART, излучающим светодиодом и светочувствительным PIN-диодом. Он работает в форматах IrDA, ASK и TV-формате беспроводного управления, имеет функции программирования мощности передачи и порога срабатывания приемника. Микросхема выполнена в корпусе типа SSOP очень малого размера (5х7 mm). Многие разработчики использовали  микросхему MCS7705, которая представляет собой аппаратный преобразователь USB – IrDA.

etSMz60N.png (595×156)

Рис. 1. Интерфейс IrDA

etSMz60O.png (675×224)

Рис. 2. Архитектура порта IrDA

 

На базе моста MCS7780 можно реализовать законченный интерфейс между USB и инфракрасным приемопередатчиком (рис. 4). В качестве приемопередатчика тоже может быть использован любой стандартный, например TFDU6102 (Vishay). Интерфейс USB: соответсвует спецификации USB 1.1; питание по USB. Интерфейс IrDA: режим SIR, скорость передачи от 2,4 кб/с до 115,2 кб/с; режим MIR (Medium IR) скорость передачи до 1,152 Мб/с; режим FIR (Fast IR) скорость передачи до 4 Мб/с. Микросхема рассчитана на работу в коммерческом температурном диапазоне: 0° ~ +70°C. Аппаратный мост USB - IrDA: MCS7780 (рис. 3) состоит из двух главных функциональных блоков, диспетчера USB, и цифрового приемопередатчика IR. Диспетчер USB обеспечивает контроль и конечные точки USB.

etSMz60P.png (634×322)

Рис. 3.  Блок схема  микросхемы MCS7780 (мост USB- IrDA) и ее внешний вид

etSMz60Q.png (1045×469)

Рис. 4. Фрагмент принципиальной схемы системы на микросхеме MCS7780CS

 

Связь в IrDA полудуплексная, так как передаваемый ИК-луч неизбежно засвечивает соседний PIN-диодный усилитель приемника. Пространственный промежуток между устройствами позволяет принять ИК-энергию только от одного источника в данный момент. Байт, который требуется передать, посылается в блок UART из CPU командой записи ввода-вывода. UART добавляет старт/стоп-биты и передает символ последовательно, начиная с младшего значения бита. Стандарт IrDA требует, чтобы все последовательные биты кодировались таким образом: логический "0" передается одиночным ИК-импульсом длиной от 1.6 ms до 3/16 периода передачи битовой ячейки, а логическая "1" передается как отсутствие ИК-импульса. Минимальная мощность потребления гарантируется при фиксированной длине импульса 1.6 ms. По окончании кодирования битов необходимо возбудить один или несколько ИК-светодиодов током соответствующего уровня, чтобы выработать ИК-импульс требуемой интенсивности. Стандарт IrDA требует, чтобы интенсивность излучения в конусе ± 30° была в диапазоне 40–50 mW/cm2, причем ИК-светодиод должен иметь длину волны 880 nm, как уже отмечалось ранее. Переданные ИК-импульсы поступают на PIN-диод, преобразующий импульсы света в токовые импульсы, которые усиливаются, фильтруются и сравниваются с пороговым уровнем для преобразования в логические уровни. ИК-импульс в активном состоянии генерирует "0", при отсутствии света генерируется логическая "1". Приемник должен точно улавливать ИК-импульсы мощностью от 4 mW/cm2 до 500 mW/cm2 в угловом диапазоне ± 15°.

Для ИК-излучения cуществует два источника интерференции (помех), основным из которых является солнечный свет, но, к счастью, в нем преобладает постоянная составляющая. Правильно спроектированные приемники должны компенсировать большие постоянные токи через PIN-диод. Другой источник помех – флуорисцентные лампы, часто применяемые для освещения. Хорошо спроектированные приемники имеют полосовой фильтр для снижения влияния таких источников помех. Вероятность ошибок связи будет зависеть от правильного выбора мощности передатчика и чувствительности приемника. В IrDA выбраны значения, гарантирующие, что описанные выше помехи не будут влиять на качество связи.

Инфракрасные устройства должны быть сконфигурированы как ведущее и ведомое. Прежде чем начнется обмен данными, должен пройти процесс идентификации всей доступной устройству-лидеру периферии (enumeration), для чего предназначен специальный формат пакета, называемый "окликом" (hail). После идентификации устройства и регистрации сведений о его максимально возможном времени опроса оно включается в общий цикл Host-опроса. В зависимости от его дальнейшей активности частота обращений может быть повышена или понижена.

Устройства, соответствующие стандарту IrDA, перед началом передачи должны в первую очередь попытался выявить (прочитать), нет ли в ближайшей окрестности активности в ИК-диапазоне, установить, не ведется ли какая-либо передача в пределах его досягаемости. Если такая активность обнаружена, то программе, выдающей запрос, посылается соответствующее сообщение, а сам блок откладывает передачу. Поскольку оба соединяющихся устройства могут быть компьютерами (а не компьютер и принтер, или клавиатура, мышь), то любое из них может быть ведущим. Выбор зависит от того, какое устройство первым проявит инициативу.

Каждое устройство имеет 32-битный адрес, вырабатываемый случайным образом при установлении соединения. Каждому кадру в пределах соединения ведущее устройство при старте присваивает 7-битный адрес соединения. Для возможных, но нежелательных случаев, когда два устройства имеют одинаковый адрес, предусмотрен такой механизм, когда ведущее устройство дает команду всем подчиненным устройствам изменить их адреса. В процессе установления связи два устройства договариваются о максимальной скорости, с которой они оба могут работать. Все первичные передачи, выполняемые до фазы переговоров, по умолчанию ведутся на скорости 9.6 Kbps.

Максимальный квант передачи может быть равен 100, 200 или 500 ms. Он представляет собой максимальное время, в течение которого устройство передает данные до того, как перейдет к прослушиванию подтверждения приема и зависит от скорости передачи, емкости буфера в принимающем устройстве. Минимальная длительность передачи определяется неспособностью передающего устройства перейти к приему данных сразу после выдачи последнего бита. Дело в том, что усилитель PIN-диода в передающем устройстве входит в состояние насыщения от собственной передачи. Время восстановления приемника – переменная величина, составляющая 0.001–10 ms. Этот параметр для данного устройства должен быть заранее известен и учитывается в фазе переговоров об установлении соединения. Процедуры расширенного восстановления включают в себя функцию сброса, которая прерывает связь, но потом восстанавливает активное состояние с параметрами соединения, используемыми по умолчанию.

Итак, применение излучателей и приемников инфракрасного (ИК) диапазона позволяет осуществлять беспроводную связь между парой устройств, удаленных на рассто­яние до нескольких метров. Инфракрасная связь без­опасна для здоровья, не создает помех в радиочастотном диапазоне и обеспечива­ет конфиденциальность передачи. Так как ИК-лучи не проходят через стены, поэтому зона приема ограничивается небольшим, легко контролируемым пространством. ИК оптоэлектронные системы создаются из отдельных элементов. Основными оптоэлектронными элементами являются:

  - источники некогерентного оптического излучения (светоизлучающий диод);

  - активные и пассивные оптические среды;

  - приемники оптического излучения (фотодиод);

  - оптические элементы (линза).

Как видно из обобщенной структурной схемы оптоэлектронного прибора (ОЭП), приведенной на рис. 5, наряду с фо­топриемниками и излучателями важным компонентом ОЭП яв­ляются входные и выходные согласующие электрические схемы, предназначенные для формирования и обработки оптического сигнала. Особенностью этих достаточно сложных, в основном интегральных, схем (рис. 6) является компенсация потерь энергии при преобразованиях «электричество - свет» и «свет - электри­чество», а также обеспечение высокой стабильности и устой­чивости работы ОЭП при воздействии внешних факторов.

etSMz60R.png (403×211)

Рис. 5. Пример структурной схемы оптоэлектронного прибора

etSMz60S.png (338×404)

Рис. 6. Блок схема приемопередатчика

 

Высокая пропускная способность оптического канала обеспечивается частотой колебаний на три-пять порядков выше, чем  в осво­енном радиотехническом диапазоне. Это значит, что во столько же раз возрастает и пропускная способность оптического ка­нала передачи информации. Идеальная электрическая развязка входа и выхода, так как в качестве носителя информации ис­пользуются электрически нейтральные фотоны, что обусловливает бесконтактность оптиче­ской связи. Отсюда следуют:

-        идеальная электрическая развязка входа и выхода;

-        однонаправленность потока информации и отсутствие, обратной реакции приемника на источник;

-        помехо­защищенность оптических каналов связи;

-        скрытность передачи информации по оптическому каналу связи.

В качестве недостатков можно выделить следующие особенности ОЭП.  Малый коэффициент полезного действия преобразований, который в лучших современных приборах (лазеры, светодиоды, p-i-n фо­тодиоды), как правило, не превышает 10...20%. Поэтому, если в устройстве осуществляются такие преобразования лишь два­жды (на входе и на выходе), как, например, в оптопарах или волоконно-оптических линиях связи (ВОЛС), то общий КПД падает до единиц процентов. Введение каждого дополнитель­ного акта преобразования информационных сигналов из одной формы в другую ведет к уменьшению КПД еще на порядок или более. Малое значение КПД вызывает рост энергопотребления, что недопустимо из-за ограниченных возможностей источников питания; затрудняет миниатюризацию, поскольку практически не удается отвести выделяющуюся теплоту; снижает эффек­тивность и надежность большинства оптоэлекронных приборов. Наличие разнородных материалов, применяемых в оптоэлектронных приборах и системах, обусловливает: малый об­щий КПД устройства из-за поглощений излучения в пассивных областях структур, отражения и рассеяния на оптических гра­ницах; снижение надежности из-за различия температурных коэффициентов расширения материалов, разъюстировки при механических воздействиях, сложность общей герметизации устройства; технологическую сложность и высокую стоимость.


Лицензия