Алгоритм - Учебный центр

Версия сайта для слабовидящих
Заполните форму ниже! Мы вам перезвоним!

Нажав на кнопку "Отправить", Я даю своё согласие на автоматизированную обработку указанной информации, распространяющейся на осуществление всех действий с ней, включая сбор, передачу по сетям связи общего назначения, накопление, хранение, обновление, изменение, использование, обезличивание, блокирование, уничтожение и обработку посредством внесения в электронную базу данных, систематизации, включения в списки и отчетные формы.


Статьи по мониторам

Стр. 23 из 31      1<< 20 21 22 23 24 25 26>> 31

Преимущества и недостатки технологии OLED.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Преимущества и недостатки технологии OLED. OLED или Organic Light Emitting Diode (органический светодиод) – одна из самых перспективных разработок, применение которой найдётся везде: просто для освещения, для создания собственно дисплеев или, например, подсветки LCD-панелей. Существует несколько различных по возможностям и сферах применения типов OLED: - Passive-matrix OLED (OLED с пассивной матрицей); - Active-matrix OLED (OLED с активной матрицей); - Transparent OLED (прозрачный OLED); - Top-emitting OLED (OLED с непрозрачным субстратом); - Foldable OLED (гибкий OLED); - White OLED (белый OLED). Преимущества: 1. OLED намного легче и тоньше, чем LCD и неорганические LED. При этом, они более гибкие. Например, создать ту же одежду с интегрированным LCD вряд ли удастся в обозримом будущем. 2. OLED ярче, чем LCD или LED. Поскольку слои OLED намного тоньше, чем кристаллические слои LED, можно создать по-настоящему многослойный «сэндвич» с высокой светимостью. 3. Поскольку OLED не нуждается в подсветке, как LCD, он потребляет намного меньше энергии. Это особенно важно для устройств, питающихся от батареек/аккумуляторов. 4. OLED сравнительно прост в производстве - пластиковые слои позволяют легко делать дисплеи большого размера. Аналогичных габаритов ЖК-матрицу создать достаточно сложно. 5. Поскольку OLED, в отличие от LCD, сам является источником света, он имеет большие углы обзора (170 и более градусов). Недостатки: 1. Ресурс. Хотя красных и зеленых OLED-слоев хватает на 46000-230000 часов работы, синий слой в настоящее время способен эффективно функционировать лишь около 14000 часов (в некоторых вариантах сроки работы доведены до 20000 часов и выше).. 2. Производство. Выпуск OLED пока обходится достаточно дорого, много дороже, чем LCD. 3. Вода/влага. Легко нарушает работу OLED-дисплея. Впрочем, это актуально для всех существующих технологий.

Неисправности инверторов, их диагностика и устранение.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Неисправности инверторов, их диагностика и устранение. Среди неисправностей мониторов довольно часто встречаются такие, которые легко устранить своими руками за несколько минут. Например, нарушение контакта вывода розетки для подключения сетевого шнура (в результате чего монитор самопроизвольно выключался). На месте плохого контакта образовывалась мощная искра, следы которой были видны на печатной плате блока питания. Мощность искры усиливалась ещё и потому, что в момент контакта заряжается электролитический конденсатор в фильтре выпрямителя. Причина неисправности - деградация пайки, часто причиной неисправности может служить и пробой диодов выпрямительного диодного моста. Рассмотрим ряд типичных неисправностей характерных для LCD-мониторов: 1) Лампы подсветки LCD-панели в рабочем режиме не включаются (изображение имеет вид еле заметных бледных "теней"). При таком дефекте в первую очередь нужно проверить напряжение и цепи питания инвертора - на контактах 6, 7, 8 разъема CN1 (12 В для LC130V01). Кроме того, необходимо проверить предохранитель F1 на плате инвертора (если он сгорел, то нужно проверить цепи питания инвертора на наличие короткого замыкания в этих цепях). Убедившись в отсутствии короткого замыкания, необходимо заменить предохранитель и произвести повторное включение (также проверяется исправность стабилизатора 5 В на транзисторе Q3. Если напряжения и цепи питания соответствуют норме, то следует проверить наличие сигнала включения на контакте 5 разъема CN1 (уровень лог. "1" в рабочем режиме) и саму схему включения (см. описание выше). При отсутствии высокого уровня на контакте 5 CN1 в рабочем режиме, можно подать его через резистор 33 кОм принудительно от источника 5 В на базу транзисторного ключа Q1. Если подсветка включится, то сам инвертор исправен, дефект следует в схемах управления. Если команда включения присутствует, или в случае, если принудительно подсветку запустить не удалось, следует проверить работу генератора преобразователя с помощью осциллографа, просмотрев эпюры напряжений на базах транзисторов Q9 и Q10. Если генерации нет, то следует проверить указанные элементы методом замены. Еще одна причина, по которой может возникнуть подобный дефект - это наличие коротких замыканий в нагрузках и/или обмотках трансформаторов инверторов. В этом случае следует проверить высоковольтные конденсаторы (на "утечку" и "пробой") и на наличие прогаров в плате и разъемах ламп подсветки. При проверке и ремонте инвертора в автономном режиме нужно учитывать, что инвертор может не запускаться без нагрузки и с очень малой нагрузкой (в этом случае, вместо ламп подсветки в качестве эквивалента нагрузки, удобно использовать резисторы мощностью 2 Вт и номиналом 100 кОм).

Технологии повышения качества визуализации трехмерных объектов.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Технологии повышения качества визуализации трехмерных объектов. Трилинейная фильтрация. Трилинейная фильтрация (frii-linear filtering - более сложный метод текстурирования, при котором кроме интерполяции текстуры выполняется интерполяция между уровнями детализации текстуры). Это метод реализуется комбинацией билинейной фильтрации и так называемого наложения mip mapping (текстуры, имеющие разную степень детализации в зависимости от расстояния до точки наблюдения, причем при отображении удаляющихся объектов уменьшается насыщенность, яркость цветов текстуры, степень ее детализации и увеличивается скорость ее обработки.). При трилинейной фильтрации берутся две соседние текстуры, одна из которых содержит текселы, попадающие в проекцию, а другая является ближайшей к ней по удаленности, и к каждой применяют билинейную фильтрацию. В итоге аппроксимация проводится уже по восьми текселам и результат выглядит ближе к реальности, так как текстуры заранее обсчитаны для определенных расстояний. Однако и к пропускной способности памяти требования в восемь раз выше, чем при поточечной фильтрации. Важной операцией в визуализации трехмерных объектов является рисование многоугольника, так обычно представляются движущиеся объекты. Текстуры на многоугольниках придают объекту более реалистичный вид, сохраняя преимущества быстрого рисования трехмерных изображений. Рисование многоугольника напоминает процесс наложения текстурных карт на каркасные структуры, хотя и требует большей производительности. Сетка, покрывающая поверхность в трехмерном пространстве, в большинстве случаев составлена из треугольников, что снижает сложность программного (или аппаратного) обеспечения для вывода объекта на экран. Изменяя размер треугольников, можно управлять степенью детализации объектов. Использование трилинейной фильтрации значительно замедляет работу 3D-ускорителей, но формирует более качественное изображение, чем обычная билинейная с мипмэппингом. Анизотропная фильтрация. Анизотропная фильтрация, используемая в некоторых видеоадаптерах, позволяет сделать сцену еще более реалистичной. Анизотропная фильтрация считается одной из лучших технологий отображения текстур. Существуют различные алгоритмы анизотропной фильтрации, суть которых в возможно более точном учете формы проекции при различном положении текстурированного полигона по отношению к проецируемой плоскости. То есть, вокруг центра проекции строится виртуальный куб из наложенных друг на друга текселов текстур разного уровня детализации, которые теоретически пересекает проекция. Внутри куба плоскость проекции может располагаться как угодно - в идеале будут учтены все точки, попа¬дающие в проекцию. В зависимости от размера грани куба может быть обсчитано от 8 до 32 текселов для определения цвета единственного пиксела. Результат действительно близок к фотореалистичному, но и задействованные ресурсы велики. Поэтому технология анизотропной фильтрации аппаратно реализована только в относительно дорогих ускорителях. Билинейная фильтрация. Билинейная фильтрация(bi-linear filtering - метод текстурирования, при котором выполняется интерполяция текстуры). Улучшение качества изображения небольших текстур, помещенных на большие многоугольники (достигается так называемая “размазанность текстур”). Эта технология устраняет эффект "блочности" текстур. Наложение рельефа методом embossing. Широко распространенным методом наложения карт рельефа является так называемое диффузное смешение (embossing - тиснение). Суть его заключается в следующем. Берется карта высот, и на ее основе строится инвертированная (обратная) копия. Далее карте рельефа присваиваются координаты (х,у) вершины полигона, на который накладываются текстуры. Из вершины на плоскость полигона строится единичный вектор, направленный на источник света. Затем он умножается на некоторое число, а итоговый вектор служит для смещения относительно карты рельефа координат инвертированной копии. Затем обе карты суммируются. Важным в данном методе является подбор числа, на которое умножается единичный вектор света, так как величина смещения инвертированной карты высот не должна приводить к нежелательным эффектам. При недостаточном смещении эффект наложения высот не заметен, при излишнем смещении изображение двоится и размывается. Таким образом, если к базовой текстурной карте попеременно применять разные карты высот или одну карту, но со смещением на каждом последующем шаге, то мы получим динамическую картину изменения освещенности объекта. Очевидно, что в этом случае термины «наложение рельефа» и «расчет освещенности» по физическому смыслу являются синонимами. Для реализации технологии наложения рельефа требуется обработать три текстурных карты: базовую, рельефа и инвертированную. Обработка инвертированной карты представляет собой весьма трудоемкую вычислительную задачу (для получения полноценного преобразования требуется три прохода конвейера блока рендеринга, но если в видеоакселераторе реализованы два конвейера, способные работать параллельно, то потребуется два прохода). В итоге получается при больших вычислительных затратах изображение среднего качества.

Мультистрочная адресация в OLED.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Мультистрочная адресация в OLED. OLED является новой технологией, с помощью которой можно производить тонкие, гибкие и яркие дисплеи. OLED-дисплеи изготовляются из органических светоизлучающих материалов и поэтому OLED-дисплеи не требуют подсветки и поляризационных фильтрующих систем, которые используются в LCD-дисплеях. Ho в OLED есть и проблемы - деградация. Основной причиной деградации в OLED является большой пиковый ток, который протекает через светодиоды пикселя в момент адресации строки. В традиционной схеме пассивной адресации для визуализации изображения производится последовательная выборка строк. Этот метод имеет одно, но очень существенное достоинство - он прост и очень дешев. Однако это не единственный способ адресации в матричных дисплеях. Альтернативой ему является мультистрочная или же активная адресация (не путать с активноматричной адресацией). Мультистрочная адресация в настоящее время широко используется в малоформатных цветных и монохромных STN-панелях для сотовых телефонов. Свои методы мультистрочной адресации запатентовало несколько известных производителей ЖК-дисплеев. Безусловно, реализация мультистрочной адресации значительно сложнее, чем традиционная последовательная адресация. Используются ортогональные функциональные преобразования, память, специальные вычисления для синтеза сигналов строк и столбцов. В случае с STN-дисплеями использование мультистрочной адресации позволяет увеличить контраст и уменьшить время реакции дисплея. Существенное отличие пассивной адресации ЖК-дисплеев и OLED-дисплеев: для первых управляющим сигналом является эффективное напряжение, а для вторых — интегральный ток. То есть при пассивной адресации OLED через шины адресации требуется передавать энергию для возбуждения светодиодных пикселей матрицы. Для OLED-панелей применение мультистрочной адресации позволит значительно уменьшить пиковый ток. Основная идея метода — использование токовой закачки в пиксели матрицы не за один цикл выборки, а за несколько. Импульсный ток при этом может быть значительно уменьшен, следовательно, будет снижена деградация органического материала. При этом можно уменьшить проявление и кросс-эффекта, связанного с протеканием больших токовых сигналов по шинам адресации. Другой положительный эффект - расширение степени мультиплексирования и границ применимости пассивной адресации на больший формат OLED-экранов.

Интегрированная графическая система Iris Pro - самое мощное клиентское графическое решение Intel.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Интегрированная графическая система Iris Pro - самое мощное клиентское графическое решение Intel. На выставке Computex 2015 компания Intel объявила о своей новой продукции и решениях. В частности, объявлено, что семейство процессоров Intel Core 5-го поколения (Broadwell) теперь включает первый 14-нм процессор для настольных ПК с разъемом LGA с интегрированной графической системой Iris Pro — самым мощным клиентским графическим решением Intel. Термопакет 65 Вт позволяет создавать еще более компактные и тонкие мини-ПК и настольные моноблоки, которые будут обеспечивать до 2 раз более высокую производительность обработки 3D-графики, на 35% более высокую скорость конвертирования видео и на 20% более высокую общую производительность по сравнению с процессорами предыдущего поколения. Одна из новинок - флагманский процессор Intel Core i7-5775C с четырьмя ядрами и поддержкой гиперпоточности (Hyper-threading) имеет рабочую частоту 3,3 ГГц и в ускоренном режиме - 3,7 ГГЦ, 6 МБ кэша третьего уровня, поддержку DDR3 1600 МГц. Вторая новинка в семействе - процессор Intel Core i5-5675C с четырьмя ядрами без гиперпоточности имеет рабочую частоту 3,1 ГГц и в ускоренном режиме - 3,6 ГГЦ, 4 МБ кэша третьего уровня, поддержку DDR3 1600 МГц. Оба процессора используют интегрированную графику Iris Pro 6200 и поддерживаются материнскими платами с сокетом LGA 1150, уже доступными на рынке. В десктопной серии представлено пять моделей Core 5-го поколения с графикой Iris Pro. В дополнение к десктопным процессорам компания Intel на выставке Computex 2015 представила также представила процессоры Intel Core 5-го поколения с Intel Iris Pro (Broadwell-H) для мобильных устройств и Интернета вещей. Они оптимизироваы для геймеров и разработчиков контента, работающих в мобильном режиме, оснащаются графической системой Intel Iris Pro 6200. 5 новых мобильных процессоров Intel Core 5-го поколения обладают TDP 47 Вт. Модель Intel Core i7-5950HQ обеспечивает до 95% более высокую скорость обработки мультимедиа и до 2 раз более высокую производительность 3D-графики по сравнению с Intel Core i7 5600U 5-го поколения (с TDP 15 Вт), предназначенным для мобильных ПК. Intel вслед за Broadwell (без изменения технологического процесса 14-нм) выпустила процессоры Skylake - шестое поколение микроархитектуры центральных процессоров Intel Core. C IGP девятого поколения от HD Graphics 510ULT с 12 EU до Iris Pro Graphics 580 с 72 исполнительными устройствами, встроенным eDRAM-буфером ёмкостью 128 Мбайт, с суммарной пиковой производительностью до 1152 гигафлопс и поддержкой программных API DirectX 12, OpenGL 4.4 и OpenCL 2.0;

LVDS – универсальный унифицированный интерфейс.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

LVDS – универсальный унифицированный интерфейс. LVDS превратился в унифицированный интерфейс, в котором однозначно прописан протокол передачи, формат входных данных, соединительный разъем и цоколевка разъема, и сейчас встретить уникальные LVDS-интерфейсы уже практически невозможно. Причем разработчик монитора имеет возможность практически не заботиться о согласовании разрядности цвета скалера и LCD-панели. Так, например, если разработчик решил применить более дешевую LCD-панель (с 18-битным кодированием цвета), то в интерфейсе не задействуется дифференциальный канал RX3, в результате чего старшие разряды цвета просто-напросто «обрубаются» (рис. 3). А вот при разработке более дорогой модели монитора, в которой применяется LCD-панель с 24-битным кодированием, производитель использует ту же самую управляющую плату и даже не изменяет программный код ее микропроцессора, и просто подключает эту панель через полнофункциональный интерфейс - и все работает. Кроме того, производитель монитора в своем изделии может использовать любую матрицу любого производителя, лишь бы он была оснащена интерфейсом LVDS и имела бы соответствующий форм-фактор (который, к слову сказать, тоже стандартизируется). Конечно же, широкий модельный ряд мониторов не всегда получают таким примитивным образом, но и недооценивать этот метод тоже не стоит. Положительным моментом использования LVDS является еще и то, что все это дает широкие возможности по диагностике сервисным специалистам при ремонте LCD-мониторов. Формат передачи данных на LVDS шине приведен на рис. 1. Базовая кодировка цветов приведена на рис. 2.

Ядро GT4 в семействе процессоров Skylake.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Ядро GT4 в семействе процессоров Skylake. В семействе процессоров Skylake будет доступно ещё более мощное ядро GT4, которое получит 72 исполнительных устройства. Однако пиковая производительность самих исполнительных устройств в Skylake не изменилась – каждое такое устройство может выполнять до 16 32-битных операций за такт. При этом оно способно исполнять 7 вычислительных потоков одновременно и имеет 128 32-байтовых регистров общего назначения. Варианты ядра GT4 могут быть дополнительно усилены eDRAM-буфером объёмом 128 Мбайт соответственно, что даёт модификации GT4e. Процессоры Broadwell комплектовались лишь одним вариантом eDRAM – объёмом 128 Мбайт. В Skylake же этот дополнительный буфер не только изменил алгоритм работы, став «кешем на стороне памяти», но и приобрёл некоторую гибкость конфигурации. Процессоры Broadwell и Haswell, оснащённые дополнительным буфером, имели высокую стоимость и предназначались исключительно для производительных ноутбуков и настольных систем. Меньший кристалл eDRAM должен дать жизнь более доступным вариантам Skylake с мощным GPU, которые смогут найти применение, например, в ультрабуках. Согласно имеющимся на текущий момент данным, графическое ядро Skyklake получит числовые индексы из пятисотой серии: Iris Pro Graphics 580 – GT4e: три модуля, 72 исполнительных устройства и 128-Мбайт eDRAM-буфер.

Из опыта ремонта. HP 8100

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Лазерный принтер HP 8100 имеет высокую производительность печати - 32 страницы формата А4. Принтер неприхотлив к качеству бумаги, предусмотрена печать на различных типах бумаги с различной плотностью.

Интерфейсы UDI и Thunderbolt.

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Интерфейсы UDI и Thunderbolt. Цифровой дисплейный интерфейс UDI Унифицированный дисплейный интерфейс (Unified Display Interface - UDI), разработанный консорциумом SIG (Special Interest Group) является цифровым дисплейным интерфейсом. UDI выполнен на основе стандарта DVI, обратно совместим с ним и HDMI, но значительно дешевле их. UDI, по мнению разработчиков, должен был стать новым стандартом дисплейного интерфейса для настольных персональных компьютеров, рабочих станций, ноутбуков и видеокарт, обеспечив совместимость с действующими стандартами DVI и HDMI. Пропускная способность первой версии интерфейса UDI достигает 16 Гбит/с, поддерживая разрешение 2560x1600 пикселов. Интерфейс Thunderbolt (Light Peak) Технология DisplayPort является неотъемлемой частью нового интерфейса универсальной высокоскоростной передачи данных - Thunderbolt (также известного как Light Peak). Она, по сути, объединила DisplayPort (для передачи видео и аудио) и PCI Express (для передачи данных) в единый последовательный интерфейс, предоставляющий 2 разнонаправленных канала на скорости до 10 Гбит/с каждый и способный работать с более длинным и дешёвым оптоволоконным кабелем.

Digital Visual Interface (DVI)

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

Согласно концепции Джона фон Неймана компьютер должен обладать устройством вывода. Единственным представлением информации, которое компьютер может легко производить, а человек воспринимать без дополнительной обработки, является визуальное представление.

SDVO (Serial Digital Video Output).

Статья добавлена: 28.08.2017 Категория: Статьи по мониторам

SDVO (Serial Digital Video Output). Еще в 2007 года фирма Intel сообщила о своем намерении использовать SDVO в качестве отраслевого стандарта. Карты SDVO адаптера должны быть совместимыми и свободно взаимозаменяемыми среди всех подобных систем. SDVO потенциально применим к любой PCI Express платформе с Integrated Graphics Processor (IGP). TV-IN. Чип GMCH, вместе с картой расширения ADD2/MEDIA, может выполнять функции TV-Tuner-карты, способной к работе с аналоговыми или HD сигналами (см. рис. 1, 2). TV-тюнер. TV-тюнер - это устройство приема видеосигналов с радиочастотного входа (антенны), в сочетании с оверлейной платой позволяет просматривать телепрограммы на обычном мониторе компьютера. Тюнер может поддерживать стандарты цветопередачи PAL, SECAM и NTSC, но из-за несовпадения стандартов на промежуточную частоту звукового сопровождения некоторые карты не принимают звуковое сопровождение отечественных телепрограмм. SDVO (Serial Digital Video Output - последовательный цифровой выход видеосигнала) – это спецификация высокоскоростного (1-2 Гбит/с ) видеоинтерфейса компании Intel, имеющая функцию выхода видеосигнала TV-Out для ПК. SDVO кодеры (рис. 1, 2) могут быть интегрированы в материнскую плату или на PCI Express Card, что позволяет иметь видео разъемы для добавления или замены при низких затратах. SDVO адаптеры и карты могут быть предназначены для реализации следующих возможностей (Intel ADD2): - Dual DVI: Dual DVI независимых дисплеев; - TV-OUT (композитный): первичный или вторичный дисплей TV-OUT (стандартной четкости в PAL или NTSC форматы); - HDTV-выход: первичное или вторичное отображение HDTV; - VGA-выход: второй независимый дисплей RGB; - DVI: первичный или вторичный DVI дисплей; - LVDS: LVDS интерфейс для подключения плоской панели.

Стр. 23 из 31      1<< 20 21 22 23 24 25 26>> 31

Лицензия